Goto

Collaborating Authors

 Tessier, Alex


Advancing Fluid-Based Thermal Management Systems Design: Leveraging Graph Neural Networks for Graph Regression and Efficient Enumeration Reduction

arXiv.org Artificial Intelligence

In this research, we developed a graph-based framework to represent various aspects of optimal thermal management system design, with the aim of rapidly and efficiently identifying optimal design candidates. Initially, the graph-based framework is utilized to generate diverse thermal management system architectures. The dynamics of these system architectures are modeled under various loading conditions, and an open-loop optimal controller is employed to determine each system's optimal performance. These modeled cases constitute the dataset, with the corresponding optimal performance values serving as the labels for the data. In the subsequent step, a Graph Neural Network (GNN) model is trained on 30% of the labeled data to predict the systems' performance, effectively addressing a regression problem. Utilizing this trained model, we estimate the performance values for the remaining 70% of the data, which serves as the test set. In the third step, the predicted performance values are employed to rank the test data, facilitating prioritized evaluation of the design scenarios. Specifically, a small subset of the test data with the highest estimated ranks undergoes evaluation via the open-loop optimal control solver. This targeted approach concentrates on evaluating higher-ranked designs identified by the GNN, replacing the exhaustive search (enumeration-based) of all design cases. The results demonstrate a significant average reduction of over 92% in the number of system dynamic modeling and optimal control analyses required to identify optimal design scenarios.


A streaming feature-based compression method for data from instrumented infrastructure

arXiv.org Machine Learning

An increasing amount of civil engineering applications are utilising data acquired from infrastructure instrumented with sensing devices. This data has an important role in monitoring the response of these structures to excitation, and evaluating structural health. In this paper we seek to monitor pedestrian-events (such as a person walking) on a footbridge using strain and acceleration data. The rate of this data acquisition and the number of sensing devices make the storage and analysis of this data a computational challenge. We introduce a streaming method to compress the sensor data, whilst preserving key patterns and features (unique to different sensor types) corresponding to pedestrian-events. Numerical demonstrations of the methodology on data obtained from strain sensors and accelerometers on the pedestrian footbridge are provided to show the trade-off between compression and accuracy during and in-between periods of pedestrian-events.