Goto

Collaborating Authors

 Terreran, Matteo


Data efficient Robotic Object Throwing with Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

Pick-and-place (PnP) operations, featuring object grasping and trajectory planning, are fundamental in industrial robotics applications. Despite many advancements in the field, PnP is limited by workspace constraints, reducing flexibility. Pick-and-throw (PnT) is a promising alternative where the robot throws objects to target locations, leveraging extrinsic resources like gravity to improve efficiency and expand the workspace. However, PnT execution is complex, requiring precise coordination of high-speed movements and object dynamics. Solutions to the PnT problem are categorized into analytical and learning-based approaches. Analytical methods focus on system modeling and trajectory generation but are time-consuming and offer limited generalization. Learning-based solutions, in particular Model-Free Reinforcement Learning (MFRL), offer automation and adaptability but require extensive interaction time. This paper introduces a Model-Based Reinforcement Learning (MBRL) framework, MC-PILOT, which combines data-driven modeling with policy optimization for efficient and accurate PnT tasks. MC-PILOT accounts for model uncertainties and release errors, demonstrating superior performance in simulations and real-world tests with a Franka Emika Panda manipulator. The proposed approach generalizes rapidly to new targets, offering advantages over analytical and Model-Free methods.


MEMROC: Multi-Eye to Mobile RObot Calibration

arXiv.org Artificial Intelligence

This paper presents MEMROC (Multi-Eye to Mobile RObot Calibration), a novel motion-based calibration method that simplifies the process of accurately calibrating multiple cameras relative to a mobile robot's reference frame. MEMROC utilizes a known calibration pattern to facilitate accurate calibration with a lower number of images during the optimization process. Additionally, it leverages robust ground plane detection for comprehensive 6-DoF extrinsic calibration, overcoming a critical limitation of many existing methods that struggle to estimate the complete camera pose. The proposed method addresses the need for frequent recalibration in dynamic environments, where cameras may shift slightly or alter their positions due to daily usage, operational adjustments, or vibrations from mobile robot movements. MEMROC exhibits remarkable robustness to noisy odometry data, requiring minimal calibration input data. This combination makes it highly suitable for daily operations involving mobile robots. A comprehensive set of experiments on both synthetic and real data proves MEMROC's efficiency, surpassing existing state-of-the-art methods in terms of accuracy, robustness, and ease of use. To facilitate further research, we have made our code publicly available at https://github.com/davidea97/MEMROC.git.


WasteGAN: Data Augmentation for Robotic Waste Sorting through Generative Adversarial Networks

arXiv.org Artificial Intelligence

Robotic waste sorting poses significant challenges in both perception and manipulation, given the extreme variability of objects that should be recognized on a cluttered conveyor belt. While deep learning has proven effective in solving complex tasks, the necessity for extensive data collection and labeling limits its applicability in real-world scenarios like waste sorting. To tackle this issue, we introduce a data augmentation method based on a novel GAN architecture called wasteGAN. The proposed method allows to increase the performance of semantic segmentation models, starting from a very limited bunch of labeled examples, such as few as 100. The key innovations of wasteGAN include a novel loss function, a novel activation function, and a larger generator block. Overall, such innovations helps the network to learn from limited number of examples and synthesize data that better mirrors real-world distributions. We then leverage the higher-quality segmentation masks predicted from models trained on the wasteGAN synthetic data to compute semantic-aware grasp poses, enabling a robotic arm to effectively recognizing contaminants and separating waste in a real-world scenario. Through comprehensive evaluation encompassing dataset-based assessments and real-world experiments, our methodology demonstrated promising potential for robotic waste sorting, yielding performance gains of up to 5.8\% in picking contaminants. The project page is available at https://github.com/bach05/wasteGAN.git


Show and Grasp: Few-shot Semantic Segmentation for Robot Grasping through Zero-shot Foundation Models

arXiv.org Artificial Intelligence

The ability of a robot to pick an object, known as robot grasping, is crucial for several applications, such as assembly or sorting. In such tasks, selecting the right target to pick is as essential as inferring a correct configuration of the gripper. A common solution to this problem relies on semantic segmentation models, which often show poor generalization to unseen objects and require considerable time and massive data to be trained. To reduce the need for large datasets, some grasping pipelines exploit few-shot semantic segmentation models, which are capable of recognizing new classes given a few examples. However, this often comes at the cost of limited performance and fine-tuning is required to be effective in robot grasping scenarios. In this work, we propose to overcome all these limitations by combining the impressive generalization capability reached by foundation models with a high-performing few-shot classifier, working as a score function to select the segmentation that is closer to the support set. The proposed model is designed to be embedded in a grasp synthesis pipeline. The extensive experiments using one or five examples show that our novel approach overcomes existing performance limitations, improving the state of the art both in few-shot semantic segmentation on the Graspnet-1B (+10.5% mIoU) and Ocid-grasp (+1.6% AP) datasets, and real-world few-shot grasp synthesis (+21.7% grasp accuracy). The project page is available at: https://leobarcellona.github.io/showandgrasp.github.io/