Goto

Collaborating Authors

 Tejwani, Ravi


Cross-Modality Embedding of Force and Language for Natural Human-Robot Communication

arXiv.org Artificial Intelligence

A method for cross-modality embedding of force profile and words is presented for synergistic coordination of verbal and haptic communication. When two people carry a large, heavy object together, they coordinate through verbal communication about the intended movements and physical forces applied to the object. This natural integration of verbal and physical cues enables effective coordination. Similarly, human-robot interaction could achieve this level of coordination by integrating verbal and haptic communication modalities. This paper presents a framework for embedding words and force profiles in a unified manner, so that the two communication modalities can be integrated and coordinated in a way that is effective and synergistic. Here, it will be shown that, although language and physical force profiles are deemed completely different, the two can be embedded in a unified latent space and proximity between the two can be quantified. In this latent space, a force profile and words can a) supplement each other, b) integrate the individual effects, and c) substitute in an exchangeable manner. First, the need for cross-modality embedding is addressed, and the basic architecture and key building block technologies are presented. Methods for data collection and implementation challenges will be addressed, followed by experimental results and discussions.


Language-Grounded Control for Coordinated Robot Motion and Speech

arXiv.org Artificial Intelligence

Recent advancements have enabled human-robot collaboration through physical assistance and verbal guidance. However, limitations persist in coordinating robots' physical motions and speech in response to real-time changes in human behavior during collaborative contact tasks. We first derive principles from analyzing physical therapists' movements and speech during patient exercises. These principles are translated into control objectives to: 1) guide users through trajectories, 2) control motion and speech pace to align completion times with varying user cooperation, and 3) dynamically paraphrase speech along the trajectory. We then propose a Language Controller that synchronizes motion and speech, modulating both based on user cooperation. Experiments with 12 users show the Language Controller successfully aligns motion and speech compared to baselines. This provides a framework for fluent human-robot collaboration.


An Avatar Robot Overlaid with the 3D Human Model of a Remote Operator

arXiv.org Artificial Intelligence

Although telepresence assistive robots have made significant progress, they still lack the sense of realism and physical presence of the remote operator. This results in a lack of trust and adoption of such robots. In this paper, we introduce an Avatar Robot System which is a mixed real/virtual robotic system that physically interacts with a person in proximity of the robot. The robot structure is overlaid with the 3D model of the remote caregiver and visualized through Augmented Reality (AR). In this way, the person receives haptic feedback as the robot touches him/her. We further present an Optimal Non-Iterative Alignment solver that solves for the optimally aligned pose of 3D Human model to the robot (shoulder to the wrist non-iteratively). The proposed alignment solver is stateless, achieves optimal alignment and faster than the baseline solvers (demonstrated in our evaluations). We also propose an evaluation framework that quantifies the alignment quality of the solvers through multifaceted metrics. We show that our solver can consistently produce poses with similar or superior alignments as IK-based baselines without their potential drawbacks.


Migratable AI : Investigating users' affect on identity and information migration of a conversational AI agent

arXiv.org Artificial Intelligence

Conversational AI agents are becoming ubiquitous and provide assistance to us in our everyday activities. In recent years, researchers have explored the migration of these agents across different embodiments in order to maintain the continuity of the task and improve user experience. In this paper, we investigate user's affective responses in different configurations of the migration parameters. We present a 2x2 between-subjects study in a task-based scenario using information migration and identity migration as parameters. We outline the affect processing pipeline from the video footage collected during the study and report user's responses in each condition. Our results show that users reported highest joy and were most surprised when both the information and identity was migrated; and reported most anger when the information was migrated without the identity of their agent.


Migratable AI: Personalizing Dialog Conversations with migration context

arXiv.org Artificial Intelligence

The migration of conversational AI agents across different embodiments in order to maintain the continuity of the task has been recently explored to further improve user experience. However, these migratable agents lack contextual understanding of the user information and the migrated device during the dialog conversations with the user. This opens the question of how an agent might behave when migrated into an embodiment for contextually predicting the next utterance. We collected a dataset from the dialog conversations between crowdsourced workers with the migration context involving personal and non-personal utterances in different settings (public or private) of embodiment into which the agent migrated. We trained the generative and information retrieval models on the dataset using with and without migration context and report the results of both qualitative metrics and human evaluation. We believe that the migration dataset would be useful for training future migratable AI systems.


Beyond Backprop: Alternating Minimization with co-Activation Memory

arXiv.org Machine Learning

We propose a novel online algorithm for training deep feedforward neural networks that employs alternating minimization (block-coordinate descent) between the weights and activation variables. It extends off-line alternating minimization approaches to online, continual learning, and improves over stochastic gradient descent (SGD) with backpropagation in several ways: it avoids the vanishing gradient issue, it allows for non-differentiable nonlinearities, and it permits parallel weight updates across the layers. Unlike SGD, our approach employs co-activation memory inspired by the online sparse coding algorithm of [Mairal et al, 2009]. Furthermore, local iterative optimization with explicit activation updates is a potentially more biologically plausible learning mechanism than backpropagation. We provide theoretical convergence analysis and promising empirical results on several datasets.


Autism Classification Using Brain Functional Connectivity Dynamics and Machine Learning

arXiv.org Machine Learning

The goal of the present study is to identify autism using machine learning techniques and resting-state brain imaging data, leveraging the temporal variability of the functional connections (FC) as the only information. We estimated and compared the FC variability across brain regions between typical, healthy subjects and autistic population by analyzing brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). Our analysis revealed that patients diagnosed with autism spectrum disorder (ASD) show increased FC variability in several brain regions that are associated with low FC variability in the typical brain. We then used the enhanced FC variability of brain regions as features for training machine learning models for ASD classification and achieved 65% accuracy in identification of ASD versus control subjects within the dataset. We also used node strength estimated from number of functional connections per node averaged over the whole scan as features for ASD classification.The results reveal that the dynamic FC measures outperform or are comparable with the static FC measures in predicting ASD.