Goto

Collaborating Authors

 Taylor, Brady


Hamming Attention Distillation: Binarizing Keys and Queries for Efficient Long-Context Transformers

arXiv.org Artificial Intelligence

Pre-trained transformer models with extended context windows are notoriously expensive to run at scale, often limiting real-world deployment due to their high computational and memory requirements. In this paper, we introduce Hamming Attention Distillation (HAD), a novel framework that binarizes keys and queries in the attention mechanism to achieve significant efficiency gains. By converting keys and queries into {-1, +1} vectors and replacing dot-product operations with efficient Hamming distance computations, our method drastically reduces computational overhead. Additionally, we incorporate attention matrix sparsification to prune low-impact activations, which further reduces the cost of processing long-context sequences. \par Despite these aggressive compression strategies, our distilled approach preserves a high degree of representational power, leading to substantially improved accuracy compared to prior transformer binarization methods. We evaluate HAD on a range of tasks and models, including the GLUE benchmark, ImageNet, and QuALITY, demonstrating state-of-the-art performance among binarized Transformers while drastically reducing the computational costs of long-context inference. \par We implement HAD in custom hardware simulations, demonstrating superior performance characteristics compared to a custom hardware implementation of standard attention. HAD achieves just $\mathbf{1.78}\%$ performance losses on GLUE compared to $9.08\%$ in state-of-the-art binarization work, and $\mathbf{2.5}\%$ performance losses on ImageNet compared to $12.14\%$, all while targeting custom hardware with a $\mathbf{79}\%$ area reduction and $\mathbf{87}\%$ power reduction compared to its standard attention counterpart.


MonoSparse-CAM: Harnessing Monotonicity and Sparsity for Enhanced Tree Model Processing on CAMs

arXiv.org Artificial Intelligence

Despite significant advancements in AI driven by neural networks, tree-based machine learning (TBML) models excel on tabular data. These models exhibit promising energy efficiency, and high performance, particularly when accelerated on analog content-addressable memory (aCAM) arrays. However, optimizing their hardware deployment, especially in leveraging TBML model structure and aCAM circuitry, remains challenging. In this paper, we introduce MonoSparse-CAM, a novel content-addressable memory (CAM) based computing optimization technique. MonoSparse-CAM efficiently leverages TBML model sparsity and CAM array circuits, enhancing processing performance. Our experiments show that MonoSparse-CAM reduces energy consumption by up to 28.56x compared to raw processing and 18.51x compared to existing deployment optimization techniques. Additionally, it consistently achieves at least 1.68x computational efficiency over current methods. By enabling energy-efficient CAM-based computing while preserving performance regardless of the array sparsity, MonoSparse-CAM addresses the high energy consumption problem of CAM which hinders processing of large arrays. Our contributions are twofold: we propose MonoSparse-CAM as an effective deployment optimization solution for CAM-based computing, and we investigate the impact of TBML model structure on array sparsity. This work provides crucial insights for energy-efficient TBML on hardware, highlighting a significant advancement in sustainable AI technologies.