Goto

Collaborating Authors

 Tarkoma, Sasu


Sometimes Painful but Certainly Promising: Feasibility and Trade-offs of Language Model Inference at the Edge

arXiv.org Artificial Intelligence

The rapid rise of Language Models (LMs) has expanded the capabilities of natural language processing, powering applications from text generation to complex decision-making. While state-of-the-art LMs often boast hundreds of billions of parameters and are primarily deployed in data centers, recent trends show a growing focus on compact models-typically under 10 billion parameters-enabled by techniques such as quantization and other model compression techniques. This shift paves the way for LMs on edge devices, offering potential benefits such as enhanced privacy, reduced latency, and improved data sovereignty. However, the inherent complexity of even these smaller models, combined with the limited computing resources of edge hardware, raises critical questions about the practical trade-offs in executing LM inference outside the cloud. To address these challenges, we present a comprehensive evaluation of generative LM inference on representative CPU-based and GPU-accelerated edge devices. Our study measures key performance indicators-including memory usage, inference speed, and energy consumption-across various device configurations. Additionally, we examine throughput-energy trade-offs, cost considerations, and usability, alongside an assessment of qualitative model performance. While quantization helps mitigate memory overhead, it does not fully eliminate resource bottlenecks, especially for larger models. Our findings quantify the memory and energy constraints that must be considered for practical real-world deployments, offering concrete insights into the trade-offs between model size, inference performance, and efficiency. The exploration of LMs at the edge is still in its early stages. We hope this study provides a foundation for future research, guiding the refinement of models, the enhancement of inference efficiency, and the advancement of edge-centric AI systems.


Consolidating TinyML Lifecycle with Large Language Models: Reality, Illusion, or Opportunity?

arXiv.org Artificial Intelligence

The evolving requirements of Internet of Things (IoT) applications are driving an increasing shift toward bringing intelligence to the edge, enabling real-time insights and decision-making within resource-constrained environments. Tiny Machine Learning (TinyML) has emerged as a key enabler of this evolution, facilitating the deployment of ML models on devices such as microcontrollers and embedded systems. However, the complexity of managing the TinyML lifecycle, including stages such as data processing, model optimization and conversion, and device deployment, presents significant challenges and often requires substantial human intervention. Motivated by these challenges, we began exploring whether Large Language Models (LLMs) could help automate and streamline the TinyML lifecycle. We developed a framework that leverages the natural language processing (NLP) and code generation capabilities of LLMs to reduce development time and lower the barriers to entry for TinyML deployment. Through a case study involving a computer vision classification model, we demonstrate the framework's ability to automate key stages of the TinyML lifecycle. Our findings suggest that LLM-powered automation holds potential for improving the lifecycle development process and adapting to diverse requirements. However, while this approach shows promise, there remain obstacles and limitations, particularly in achieving fully automated solutions. This paper sheds light on both the challenges and opportunities of integrating LLMs into TinyML workflows, providing insights into the path forward for efficient, AI-assisted embedded system development.


Large Language Model Based Multi-Agent System Augmented Complex Event Processing Pipeline for Internet of Multimedia Things

arXiv.org Artificial Intelligence

The rapid advancement of artificial intelligence (AI) technologies has revolutionized the way we process and analyze data, particularly in the field of complex event processing, such as video query analysis. Traditional CEP systems often struggle with the dynamic demands of modern applications such as real-time or near realtime video analytics that require the integration of diverse data sources, for example, thousands of surveillance cameras deployed in a city, leading to limitations in their performance and applicability. Modern CEP pipelines are domain-specific and often struggle to adapt to dynamic changes in the environment in a timely manner. State-of-the-art applications (such as live video streaming on TikTok, YouTube etc.) generate an increasing volume of diverse, complex data that needs to be handled in the appropriate manner depending on the use case. Large Language Models (LLMs), also known as foundation models, inherently possess the ability to handle and analyze dynamic forms of data and therefore provide the necessary foundation upon which a dynamic CEP pipeline can be created which can support a diverse range of domains.


Creation of AI-driven Smart Spaces for Enhanced Indoor Environments -- A Survey

arXiv.org Artificial Intelligence

Smart spaces are ubiquitous computing environments that integrate diverse sensing and communication technologies to enhance space functionality, optimize energy utilization, and improve user comfort and well-being. The integration of emerging AI methodologies into these environments facilitates the formation of AI-driven smart spaces, which further enhance functionalities of the spaces by enabling advanced applications such as personalized comfort settings, interactive living spaces, and automatization of the space systems, all resulting in enhanced indoor experiences of the users. In this paper, we present a systematic survey of existing research on the foundational components of AI-driven smart spaces, including sensor technologies, data communication protocols, sensor network management and maintenance strategies, as well as the data collection, processing and analytics. Given the pivotal role of AI in establishing AI-powered smart spaces, we explore the opportunities and challenges associated with traditional machine learning (ML) approaches, such as deep learning (DL), and emerging methodologies including large language models (LLMs). Finally, we provide key insights necessary for the development of AI-driven smart spaces, propose future research directions, and sheds light on the path forward.


From Pixels to Progress: Generating Road Network from Satellite Imagery for Socioeconomic Insights in Impoverished Areas

arXiv.org Artificial Intelligence

The Sustainable Development Goals (SDGs) aim to resolve societal challenges, such as eradicating poverty and improving the lives of vulnerable populations in impoverished areas. Those areas rely on road infrastructure construction to promote accessibility and economic development. Although publicly available data like OpenStreetMap is available to monitor road status, data completeness in impoverished areas is limited. Meanwhile, the development of deep learning techniques and satellite imagery shows excellent potential for earth monitoring. To tackle the challenge of road network assessment in impoverished areas, we develop a systematic road extraction framework combining an encoder-decoder architecture and morphological operations on satellite imagery, offering an integrated workflow for interdisciplinary researchers. Extensive experiments of road network extraction on real-world data in impoverished regions achieve a 42.7% enhancement in the F1-score over the baseline methods and reconstruct about 80% of the actual roads. We also propose a comprehensive road network dataset covering approximately 794,178 km2 area and 17.048 million people in 382 impoverished counties in China. The generated dataset is further utilized to conduct socioeconomic analysis in impoverished counties, showing that road network construction positively impacts regional economic development. The technical appendix, code, and generated dataset can be found at https://github.com/tsinghua-fib-lab/Road_network_extraction_impoverished_counties.


Adaptive Compression-Aware Split Learning and Inference for Enhanced Network Efficiency

arXiv.org Artificial Intelligence

The growing number of AI-driven applications in mobile devices has led to solutions that integrate deep learning models with the available edge-cloud resources. Due to multiple benefits such as reduction in on-device energy consumption, improved latency, improved network usage, and certain privacy improvements, split learning, where deep learning models are split away from the mobile device and computed in a distributed manner, has become an extensively explored topic. Incorporating compression-aware methods (where learning adapts to compression level of the communicated data) has made split learning even more advantageous. This method could even offer a viable alternative to traditional methods, such as federated learning techniques. In this work, we develop an adaptive compression-aware split learning method ('deprune') to improve and train deep learning models so that they are much more network-efficient, which would make them ideal to deploy in weaker devices with the help of edge-cloud resources. This method is also extended ('prune') to very quickly train deep learning models through a transfer learning approach, which trades off little accuracy for much more network-efficient inference abilities. We show that the 'deprune' method can reduce network usage by 4x when compared with a split-learning approach (that does not use our method) without loss of accuracy, while also improving accuracy over compression-aware split-learning by 4 percent. Lastly, we show that the 'prune' method can reduce the training time for certain models by up to 6x without affecting the accuracy when compared against a compression-aware split-learning approach.


A Survey on Generative AI and LLM for Video Generation, Understanding, and Streaming

arXiv.org Artificial Intelligence

This paper offers an insightful examination of how currently top-trending AI technologies, i.e., generative artificial intelligence (Generative AI) and large language models (LLMs), are reshaping the field of video technology, including video generation, understanding, and streaming. It highlights the innovative use of these technologies in producing highly realistic videos, a significant leap in bridging the gap between real-world dynamics and digital creation. The study also delves into the advanced capabilities of LLMs in video understanding, demonstrating their effectiveness in extracting meaningful information from visual content, thereby enhancing our interaction with videos. In the realm of video streaming, the paper discusses how LLMs contribute to more efficient and user-centric streaming experiences, adapting content delivery to individual viewer preferences. This comprehensive review navigates through the current achievements, ongoing challenges, and future possibilities of applying Generative AI and LLMs to video-related tasks, underscoring the immense potential these technologies hold for advancing the field of video technology related to multimedia, networking, and AI communities.


AI-native Interconnect Framework for Integration of Large Language Model Technologies in 6G Systems

arXiv.org Artificial Intelligence

The evolution towards 6G architecture promises a transformative shift in communication networks, with artificial intelligence (AI) playing a pivotal role. This paper delves deep into the seamless integration of Large Language Models (LLMs) and Generalized Pretrained Transformers (GPT) within 6G systems. Their ability to grasp intent, strategize, and execute intricate commands will be pivotal in redefining network functionalities and interactions. Central to this is the AI Interconnect framework, intricately woven to facilitate AI-centric operations within the network. Building on the continuously evolving current state-of-the-art, we present a new architectural perspective for the upcoming generation of mobile networks. Here, LLMs and GPTs will collaboratively take center stage alongside traditional pre-generative AI and machine learning (ML) algorithms. This union promises a novel confluence of the old and new, melding tried-and-tested methods with transformative AI technologies. Along with providing a conceptual overview of this evolution, we delve into the nuances of practical applications arising from such an integration. Through this paper, we envisage a symbiotic integration where AI becomes the cornerstone of the next-generation communication paradigm, offering insights into the structural and functional facets of an AI-native 6G network.


Edge AI Inference in Heterogeneous Constrained Computing: Feasibility and Opportunities

arXiv.org Artificial Intelligence

The network edge's role in Artificial Intelligence (AI) inference processing is rapidly expanding, driven by a plethora of applications seeking computational advantages. These applications strive for data-driven efficiency, leveraging robust AI capabilities and prioritizing real-time responsiveness. However, as demand grows, so does system complexity. The proliferation of AI inference accelerators showcases innovation but also underscores challenges, particularly the varied software and hardware configurations of these devices. This diversity, while advantageous for certain tasks, introduces hurdles in device integration and coordination. In this paper, our objectives are three-fold. Firstly, we outline the requirements and components of a framework that accommodates hardware diversity. Next, we assess the impact of device heterogeneity on AI inference performance, identifying strategies to optimize outcomes without compromising service quality. Lastly, we shed light on the prevailing challenges and opportunities in this domain, offering insights for both the research community and industry stakeholders.


A Satellite Imagery Dataset for Long-Term Sustainable Development in United States Cities

arXiv.org Artificial Intelligence

Cities play an important role in achieving sustainable development goals (SDGs) to promote economic growth and meet social needs. Especially satellite imagery is a potential data source for studying sustainable urban development. However, a comprehensive dataset in the United States (U.S.) covering multiple cities, multiple years, multiple scales, and multiple indicators for SDG monitoring is lacking. To support the research on SDGs in U.S. cities, we develop a satellite imagery dataset using deep learning models for five SDGs containing 25 sustainable development indicators. The proposed dataset covers the 100 most populated U.S. cities and corresponding Census Block Groups from 2014 to 2023. Specifically, we collect satellite imagery and identify objects with state-of-the-art object detection and semantic segmentation models to observe cities' bird's-eye view. We further gather population, nighttime light, survey, and built environment data to depict SDGs regarding poverty, health, education, inequality, and living environment. We anticipate the dataset to help urban policymakers and researchers to advance SDGs-related studies, especially applying satellite imagery to monitor long-term and multi-scale SDGs in cities.