Collaborating Authors

Tao, Dacheng

Achieving Personalized Federated Learning with Sparse Local Models Artificial Intelligence

Federated learning (FL) is vulnerable to heterogeneously distributed data, since a common global model in FL may not adapt to the heterogeneous data distribution of each user. To counter this issue, personalized FL (PFL) was proposed to produce dedicated local models for each individual user. However, PFL is far from its maturity, because existing PFL solutions either demonstrate unsatisfactory generalization towards different model architectures or cost enormous extra computation and memory. In this work, we propose federated learning with personalized sparse mask (FedSpa), a novel PFL scheme that employs personalized sparse masks to customize sparse local models on the edge. Instead of training an intact (or dense) PFL model, FedSpa only maintains a fixed number of active parameters throughout training (aka sparse-to-sparse training), which enables users' models to achieve personalization with cheap communication, computation, and memory cost. We theoretically show that the iterates obtained by FedSpa converge to the local minimizer of the formulated SPFL problem at rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$. Comprehensive experiments demonstrate that FedSpa significantly saves communication and computation costs, while simultaneously achieves higher model accuracy and faster convergence speed against several state-of-the-art PFL methods.

Knowledge Graph Augmented Network Towards Multiview Representation Learning for Aspect-based Sentiment Analysis Artificial Intelligence

Aspect-based sentiment analysis (ABSA) is a fine-grained task of sentiment analysis. To better comprehend long complicated sentences and obtain accurate aspect-specific information, linguistic and commonsense knowledge are generally required in this task. However, most methods employ complicated and inefficient approaches to incorporate external knowledge, e.g., directly searching the graph nodes. Additionally, the complementarity between external knowledge and linguistic information has not been thoroughly studied. To this end, we propose a knowledge graph augmented network (KGAN), which aims to effectively incorporate external knowledge with explicitly syntactic and contextual information. In particular, KGAN captures the sentiment feature representations from multiple different perspectives, i.e., context-, syntax- and knowledge-based. First, KGAN learns the contextual and syntactic representations in parallel to fully extract the semantic features. Then, KGAN integrates the knowledge graphs into the embedding space, based on which the aspect-specific knowledge representations are further obtained via an attention mechanism. Last, we propose a hierarchical fusion module to complement these multiview representations in a local-to-global manner. Extensive experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN. Notably, with the help of the pretrained model of RoBERTa, KGAN achieves a new record of state-of-the-art performance.

PONet: Robust 3D Human Pose Estimation via Learning Orientations Only Artificial Intelligence

Conventional 3D human pose estimation relies on first detecting 2D body keypoints and then solving the 2D to 3D correspondence problem.Despite the promising results, this learning paradigm is highly dependent on the quality of the 2D keypoint detector, which is inevitably fragile to occlusions and out-of-image absences.In this paper,we propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only, hence bypassing the error-prone keypoint detector in the absence of image evidence. For images with partially invisible limbs, PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.Moreover, PONet is competent to infer full 3D poses even from images with completely invisible limbs, by exploiting the orientation correlation between visible limbs to complement the estimated poses,further improving the robustness of 3D pose estimation.We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW. Our method achieves results on par with state-of-the-art techniques in ideal settings, yet significantly eliminates the dependency on keypoint detectors and the corresponding computation burden. In highly challenging scenarios, such as truncation and erasing, our method performs very robustly and yields much superior results as compared to state of the art,demonstrating its potential for real-world applications.

Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer Artificial Intelligence

Bayesian neural networks (BNNs) have become a principal approach to alleviate overconfident predictions in deep learning, but they often suffer from scaling issues due to a large number of distribution parameters. In this paper, we discover that the first layer of a deep network possesses multiple disparate optima when solely retrained. This indicates a large posterior variance when the first layer is altered by a Bayesian layer, which motivates us to design a spatial-temporal-fusion BNN (STF-BNN) for efficiently scaling BNNs to large models: (1) first normally train a neural network from scratch to realize fast training; and (2) the first layer is converted to Bayesian and inferred by employing stochastic variational inference, while other layers are fixed. Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently. We further provide theoretical guarantees on the generalizability and the capability of mitigating overconfidence of STF-BNN. Comprehensive experiments demonstrate that STF-BNN (1) achieves the state-of-the-art performance on prediction and uncertainty quantification; (2) significantly improves adversarial robustness and privacy preservation; and (3) considerably reduces training time and memory costs.

Spectral Complexity-scaled Generalization Bound of Complex-valued Neural Networks Artificial Intelligence

Complex-valued neural networks (CVNNs) have been widely applied to various fields, especially signal processing and image recognition. However, few works focus on the generalization of CVNNs, albeit it is vital to ensure the performance of CVNNs on unseen data. This paper is the first work that proves a generalization bound for the complex-valued neural network. The bound scales with the spectral complexity, the dominant factor of which is the spectral norm product of weight matrices. Further, our work provides a generalization bound for CVNNs when training data is sequential, which is also affected by the spectral complexity. Theoretically, these bounds are derived via Maurey Sparsification Lemma and Dudley Entropy Integral. Empirically, we conduct experiments by training complex-valued convolutional neural networks on different datasets: MNIST, FashionMNIST, CIFAR-10, CIFAR-100, Tiny ImageNet, and IMDB. Spearman's rank-order correlation coefficients and the corresponding p values on these datasets give strong proof that the spectral complexity of the network, measured by the weight matrices spectral norm product, has a statistically significant correlation with the generalization ability.

FIBA: Frequency-Injection based Backdoor Attack in Medical Image Analysis Artificial Intelligence

In recent years, the security of AI systems has drawn increasing research attention, especially in the medical imaging realm. To develop a secure medical image analysis (MIA) system, it is a must to study possible backdoor attacks (BAs), which can embed hidden malicious behaviors into the system. However, designing a unified BA method that can be applied to various MIA systems is challenging due to the diversity of imaging modalities (e.g., X-Ray, CT, and MRI) and analysis tasks (e.g., classification, detection, and segmentation). Most existing BA methods are designed to attack natural image classification models, which apply spatial triggers to training images and inevitably corrupt the semantics of poisoned pixels, leading to the failures of attacking dense prediction models. To address this issue, we propose a novel Frequency-Injection based Backdoor Attack method (FIBA) that is capable of delivering attacks in various MIA tasks. Specifically, FIBA leverages a trigger function in the frequency domain that can inject the low-frequency information of a trigger image into the poisoned image by linearly combining the spectral amplitude of both images. Since it preserves the semantics of the poisoned image pixels, FIBA can perform attacks on both classification and dense prediction models. Experiments on three benchmarks in MIA (i.e., ISIC-2019 for skin lesion classification, KiTS-19 for kidney tumor segmentation, and EAD-2019 for endoscopic artifact detection), validate the effectiveness of FIBA and its superiority over state-of-the-art methods in attacking MIA models as well as bypassing backdoor defense. The code will be available at

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Artificial Intelligence

Aspect-based Sentiment Analysis (ABSA) aims to determine the sentiment polarity towards an aspect. Because of the expensive and limited labelled data, the pretraining strategy has become the de-facto standard for ABSA. However, there always exists severe domain shift between the pretraining and downstream ABSA datasets, hindering the effective knowledge transfer when directly finetuning and making the downstream task performs sub-optimal. To mitigate such domain shift, we introduce a unified alignment pretraining framework into the vanilla pretrain-finetune pipeline with both instance- and knowledge-level alignments. Specifically, we first devise a novel coarse-to-fine retrieval sampling approach to select target domain-related instances from the large-scale pretraining dataset, thus aligning the instances between pretraining and target domains (\textit{First Stage}). Then, we introduce a knowledge guidance-based strategy to further bridge the domain gap at the knowledge level. In practice, we formulate the model pretrained on the sampled instances into a knowledge guidance model and a learner model, respectively. On the target dataset, we design an on-the-fly teacher-student joint fine-tuning approach to progressively transfer the knowledge from the knowledge guidance model to the learner model (\textit{Second Stage}). Thereby, the learner model can maintain more domain-invariant knowledge when learning new knowledge from the target dataset. In the \textit{Third Stage,} the learner model is finetuned to better adapt its learned knowledge to the target dataset. Extensive experiments and analyses on several ABSA benchmarks demonstrate the effectiveness and universality of our proposed pretraining framework. Notably, our pretraining framework pushes several strong baseline models up to the new state-of-the-art records. We release our code and models.

Semantic-Preserving Adversarial Text Attacks Machine Learning

Deep neural networks (DNNs) are known to be vulnerable to adversarial images, while their robustness in text classification is rarely studied. Several lines of text attack methods have been proposed in the literature, including character-level, word-level, and sentence-level attacks. However, it is still a challenge to minimize the number of word changes necessary to induce misclassification, while simultaneously ensuring lexical correctness, syntactic soundness, and semantic similarity. In this paper, we propose a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) method to examine the vulnerability of deep models. Our method has four major merits. Firstly, we propose to attack text documents not only at the unigram word level but also at the bigram level which better keeps semantics and avoids producing meaningless outputs. Secondly, we propose a hybrid method to replace the input words with options among both their synonyms candidates and sememe candidates, which greatly enriches the potential substitutions compared to only using synonyms. Thirdly, we design an optimization algorithm, i.e., Semantic Preservation Optimization (SPO), to determine the priority of word replacements, aiming to reduce the modification cost. Finally, we further improve the SPO with a semantic Filter (named SPOF) to find the adversarial example with the highest semantic similarity. We evaluate the effectiveness of our BU-SPO and BU-SPOF on IMDB, AG's News, and Yahoo! Answers text datasets by attacking four popular DNNs models. Results show that our methods achieve the highest attack success rates and semantics rates by changing the smallest number of words compared with existing methods.

DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation Artificial Intelligence

Unsupervised domain adaptation (UDA) for semantic segmentation aims to adapt a segmentation model trained on the labeled source domain to the unlabeled target domain. Existing methods try to learn domain invariant features while suffering from large domain gaps that make it difficult to correctly align discrepant features, especially in the initial training phase. To address this issue, we propose a novel Dual Soft-Paste (DSP) method in this paper. Specifically, DSP selects some classes from a source domain image using a long-tail class first sampling strategy and softly pastes the corresponding image patch on both the source and target training images with a fusion weight. Technically, we adopt the mean teacher framework for domain adaptation, where the pasted source and target images go through the student network while the original target image goes through the teacher network. Output-level alignment is carried out by aligning the probability maps of the target fused image from both networks using a weighted cross-entropy loss. In addition, feature-level alignment is carried out by aligning the feature maps of the source and target images from student network using a weighted maximum mean discrepancy loss. DSP facilitates the model learning domain-invariant features from the intermediate domains, leading to faster convergence and better performance. Experiments on two challenging benchmarks demonstrate the superiority of DSP over state-of-the-art methods. Code is available at \url{}.

The USYD-JD Speech Translation System for IWSLT 2021 Artificial Intelligence

This paper describes the University of Sydney& JD's joint submission of the IWSLT 2021 low resource speech translation task. We participated in the Swahili-English direction and got the best scareBLEU (25.3) score among all the participants. Our constrained system is based on a pipeline framework, i.e. ASR and NMT. We trained our models with the officially provided ASR and MT datasets. The ASR system is based on the open-sourced tool Kaldi and this work mainly explores how to make the most of the NMT models. To reduce the punctuation errors generated by the ASR model, we employ our previous work SlotRefine to train a punctuation correction model. To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning. For model structure, we tried auto-regressive and non-autoregressive models, respectively. In addition, we proposed two novel pre-train approaches, i.e. \textit{de-noising training} and \textit{bidirectional training} to fully exploit the data. Extensive experiments show that adding the above techniques consistently improves the BLEU scores, and the final submission system outperforms the baseline (Transformer ensemble model trained with the original parallel data) by approximately 10.8 BLEU score, achieving the SOTA performance.