Tann, Hokchhay
UDC: Unified DNAS for Compressible TinyML Models
Fedorov, Igor, Matas, Ramon, Tann, Hokchhay, Zhou, Chuteng, Mattina, Matthew, Whatmough, Paul
Deploying TinyML models on low-cost IoT hardware is very challenging, due to limited device memory capacity. Neural processing unit (NPU) hardware address the memory challenge by using model compression to exploit weight quantization and sparsity to fit more parameters in the same footprint. However, designing compressible neural networks (NNs) is challenging, as it expands the design space across which we must make balanced trade-offs. This paper demonstrates Unified DNAS for Compressible (UDC) NNs, which explores a large search space to generate state-of-the-art compressible NNs for NPU. ImageNet results show UDC networks are up to $3.35\times$ smaller (iso-accuracy) or 6.25% more accurate (iso-model size) than previous work.
Flexible Deep Neural Network Processing
Tann, Hokchhay, Hashemi, Soheil, Reda, Sherief
The recent success of Deep Neural Networks (DNNs) has drastically improved the state of the art for many application domains. While achieving high accuracy performance, deploying state-of-the-art DNNs is a challenge since they typically require billions of expensive arithmetic computations. In addition, DNNs are typically deployed in ensemble to boost accuracy performance, which further exacerbates the system requirements. This computational overhead is an issue for many platforms, e.g. data centers and embedded systems, with tight latency and energy budgets. In this article, we introduce flexible DNNs ensemble processing technique, which achieves large reduction in average inference latency while incurring small to negligible accuracy drop. Our technique is flexible in that it allows for dynamic adaptation between quality of results (QoR) and execution runtime. We demonstrate the effectiveness of the technique on AlexNet and ResNet-50 using the ImageNet dataset. This technique can also easily handle other types of networks.