Tang, Yifan
Hybrid Metaheuristic Vehicle Routing Problem for Security Dispatch Operations
Vu, Nguyen Gia Hien, Tang, Yifan, Lim, Rey, Wang, G. Gary
This paper investigates the optimization of the Vehicle Routing Problem for Security Dispatch (VRPSD). VRPSD focuses on security and patrolling applications which involve challenging constraints including precise timing and strict time windows. We propose three algorithms based on different metaheuristics, which are Adaptive Large Neighborhood Search (ALNS), Tabu Search (TS), and Threshold Accepting (TA). The first algorithm combines single-phase ALNS with TA, the second employs a multiphase ALNS with TA, and the third integrates multiphase ALNS, TS, and TA. Experiments are conducted on an instance comprising 251 customer requests. The results demonstrate that the third algorithm, the hybrid multiphase ALNS-TS-TA algorithm, delivers the best performance. This approach simultaneously leverages the large-area search capabilities of ALNS for exploration and effectively escapes local optima when the multiphase ALNS is coupled with TS and TA. Furthermore, in our experiments, the hybrid multiphase ALNS-TS-TA algorithm is the only one that shows potential for improving results with increased computation time across all attempts.
Toward Copyright Integrity and Verifiability via Multi-Bit Watermarking for Intelligent Transportation Systems
Wang, Yihao, Li, Lingxiao, Tang, Yifan, Zhang, Ru, Liu, Jianyi
Intelligent transportation systems (ITS) use advanced technologies such as artificial intelligence to significantly improve traffic flow management efficiency, and promote the intelligent development of the transportation industry. However, if the data in ITS is attacked, such as tampering or forgery, it will endanger public safety and cause social losses. Therefore, this paper proposes a watermarking that can verify the integrity of copyright in response to the needs of ITS, termed ITSmark. ITSmark focuses on functions such as extracting watermarks, verifying permission, and tracing tampered locations. The scheme uses the copyright information to build the multi-bit space and divides this space into multiple segments. These segments will be assigned to tokens. Thus, the next token is determined by its segment which contains the copyright. In this way, the obtained data contains the custom watermark. To ensure the authorization, key parameters are encrypted during copyright embedding to obtain cipher data. Only by possessing the correct cipher data and private key, can the user entirely extract the watermark. Experiments show that ITSmark surpasses baseline performances in data quality, extraction accuracy, and unforgeability. It also shows unique capabilities of permission verification and tampered location tracing, which ensures the security of extraction and the reliability of copyright verification. Furthermore, ITSmark can also customize the watermark embedding position and proportion according to user needs, making embedding more flexible.
U-GIFT: Uncertainty-Guided Firewall for Toxic Speech in Few-Shot Scenario
Song, Jiaxin, Wang, Xinyu, Wang, Yihao, Tang, Yifan, Zhang, Ru, Liu, Jianyi, Liu, Gongshen
With the widespread use of social media, user-generated content has surged on online platforms. When such content includes hateful, abusive, offensive, or cyberbullying behavior, it is classified as toxic speech, posing a significant threat to the online ecosystem's integrity and safety. While manual content moderation is still prevalent, the overwhelming volume of content and the psychological strain on human moderators underscore the need for automated toxic speech detection. Previously proposed detection methods often rely on large annotated datasets; however, acquiring such datasets is both costly and challenging in practice. To address this issue, we propose an uncertainty-guided firewall for toxic speech in few-shot scenarios, U-GIFT, that utilizes self-training to enhance detection performance even when labeled data is limited. Specifically, U-GIFT combines active learning with Bayesian Neural Networks (BNNs) to automatically identify high-quality samples from unlabeled data, prioritizing the selection of pseudo-labels with higher confidence for training based on uncertainty estimates derived from model predictions. Extensive experiments demonstrate that U-GIFT significantly outperforms competitive baselines in few-shot detection scenarios. In the 5-shot setting, it achieves a 14.92\% performance improvement over the basic model. Importantly, U-GIFT is user-friendly and adaptable to various pre-trained language models (PLMs). It also exhibits robust performance in scenarios with sample imbalance and cross-domain settings, while showcasing strong generalization across various language applications. We believe that U-GIFT provides an efficient solution for few-shot toxic speech detection, offering substantial support for automated content moderation in cyberspace, thereby acting as a firewall to promote advancements in cybersecurity.
Mobile Robot Oriented Large-Scale Indoor Dataset for Dynamic Scene Understanding
Tang, Yifan, Tai, Cong, Chen, Fangxing, Zhang, Wanting, Zhang, Tao, Liu, Xueping, Liu, Yongjin, Zeng, Long
Most existing robotic datasets capture static scene data and thus are limited in evaluating robots' dynamic performance. To address this, we present a mobile robot oriented large-scale indoor dataset, denoted as THUD (Tsinghua University Dynamic) robotic dataset, for training and evaluating their dynamic scene understanding algorithms. Specifically, the THUD dataset construction is first detailed, including organization, acquisition, and annotation methods. It comprises both real-world and synthetic data, collected with a real robot platform and a physical simulation platform, respectively. Our current dataset includes 13 larges-scale dynamic scenarios, 90K image frames, 20M 2D/3D bounding boxes of static and dynamic objects, camera poses, and IMU. The dataset is still continuously expanding. Then, the performance of mainstream indoor scene understanding tasks, e.g. 3D object detection, semantic segmentation, and robot relocalization, is evaluated on our THUD dataset. These experiments reveal serious challenges for some robot scene understanding tasks in dynamic scenes. By sharing this dataset, we aim to foster and iterate new mobile robot algorithms quickly for robot actual working dynamic environment, i.e. complex crowded dynamic scenes.
Linguistic Steganalysis via LLMs: Two Modes for Efficient Detection of Strongly Concealed Stego
Tang, Yifan, Wang, Yihao, Zhang, Ru, Liu, Jianyi
To detect stego (steganographic text) in complex scenarios, linguistic steganalysis (LS) with various motivations has been proposed and achieved excellent performance. However, with the development of generative steganography, some stegos have strong concealment, especially after the emergence of LLMs-based steganography, the existing LS has low detection or cannot detect them. We designed a novel LS with two modes called LSGC. In the generation mode, we created an LS-task "description" and used the generation ability of LLM to explain whether texts to be detected are stegos. On this basis, we rethought the principle of LS and LLMs, and proposed the classification mode. In this mode, LSGC deleted the LS-task "description" and used the "causalLM" LLMs to extract steganographic features. The LS features can be extracted by only one pass of the model, and a linear layer with initialization weights is added to obtain the classification probability. Experiments on strongly concealed stegos show that LSGC significantly improves detection and reaches SOTA performance. Additionally, LSGC in classification mode greatly reduces training time while maintaining high performance.
Selecting Subsets of Source Data for Transfer Learning with Applications in Metal Additive Manufacturing
Tang, Yifan, Dehaghani, M. Rahmani, Sajadi, Pouyan, Wang, G. Gary
ABSTRACT Considering data insufficiency in metal additive manufacturing (AM), transfer learning (TL) has been adopted to extract knowledge from source domains (e.g., completed printings) to improve the modeling performance in target domains (e.g., new printings). Current applications use all accessible source data directly in TL with no regard to the similarity between source and target data. This paper proposes a systematic method to find appropriate subsets of source data based on similarities between the source and target datasets for a given set of limited target domain data. Such similarity is characterized by the spatial and model distance metrics. A Pareto frontier-based source data selection method is developed, where the source data located on the Pareto frontier defined by two similarity distance metrics are selected iteratively. The method is integrated into an instance-based TL method (decision tree regression model) and a model-based TL method (fine-tuned artificial neural network). Both models are then tested on several regression tasks in metal AM. Comparison results demonstrate that 1) the source data selection method is general and supports integration with various TL methods and distance metrics, 2) compared with using all source data, the proposed method can find a small subset of source data from the same domain with better TL performance in metal AM regression tasks involving different processes and machines, and 3) when multiple source domains exist, the source data selection method could find the subset from one source domain to obtain comparable or better TL performance than the model constructed using data from all source domains. Keywords: metal additive manufacturing, transfer learning, source data selection, Pareto frontier 1 Introduction Metal additive manufacturing (AM) fabricates parts by depositing metal materials layer by layer with various heat sources, e.g., the laser beam and electric arc. Although metal AM has been adopted in electronics (Pang et al. 2020), automotive (Vasco 2021), aerospace (Blakey-Milner et al. 2021), and other industries, low productivity and unstable quality are two drawbacks that restrict the applications of metal AM. To alleviate the two drawbacks, constructing data-driven models to reveal correlations among processes, structures, and properties has attracted attention in both industry and academia. These models are built based on collected data from experiments or simulations and adopted for process optimization, control, or monitoring to improve the quality of printed parts.
Real-Time 2D Temperature Field Prediction in Metal Additive Manufacturing Using Physics-Informed Neural Networks
Sajadi, Pouyan, Dehaghani, Mostafa Rahmani, Tang, Yifan, Wang, G. Gary
Accurately predicting the temperature field in metal additive manufacturing (AM) processes is critical to preventing overheating, adjusting process parameters, and ensuring process stability. While physics-based computational models offer precision, they are often time-consuming and unsuitable for real-time predictions and online control in iterative design scenarios. Conversely, machine learning models rely heavily on high-quality datasets, which can be costly and challenging to obtain within the metal AM domain. Our work addresses this by introducing a physics-informed neural network framework specifically designed for temperature field prediction in metal AM. This framework incorporates a physics-informed input, physics-informed loss function, and a Convolutional Long Short-Term Memory (ConvLSTM) architecture. Utilizing real-time temperature data from the process, our model predicts 2D temperature fields for future timestamps across diverse geometries, deposition patterns, and process parameters. We validate the proposed framework in two scenarios: full-field temperature prediction for a thin wall and 2D temperature field prediction for cylinder and cubic parts, demonstrating errors below 3% and 1%, respectively. Our proposed framework exhibits the flexibility to be applied across diverse scenarios with varying process parameters, geometries, and deposition patterns.
Online Two-stage Thermal History Prediction Method for Metal Additive Manufacturing of Thin Walls
Tang, Yifan, Dehaghani, M. Rahmani, Sajadi, Pouyan, Balani, Shahriar Bakrani, Dhalpe, Akshay, Panicker, Suraj, Wu, Di, Coatanea, Eric, Wang, G. Gary
This paper aims to propose an online two-stage thermal history prediction method, which could be integrated into a metal AM process for performance control. Based on the similarity of temperature curves (curve segments of a temperature profile of one point) between any two successive layers, the first stage of the proposed method designs a layer-to-layer prediction model to estimate the temperature curves of the yet-to-print layer from measured temperatures of certain points on the previously printed layer. With measured/predicted temperature profiles of several points on the same layer, the second stage proposes a reduced order model (ROM) (intra-layer prediction model) to decompose and construct the temperature profiles of all points on the same layer, which could be used to build the temperature field of the entire layer. The training of ROM is performed with an extreme learning machine (ELM) for computational efficiency. Fifteen wire arc AM experiments and nine simulations are designed for thin walls with a fixed length and unidirectional printing of each layer. The test results indicate that the proposed prediction method could construct the thermal history of a yet-to-print layer within 0.1 seconds on a low-cost desktop computer. Meanwhile, the method has acceptable generalization capability in most cases from lower layers to higher layers in the same simulation, as well as from one simulation to a new simulation on different AM process parameters. More importantly, after fine-tuning the proposed method with limited experimental data, the relative errors of all predicted temperature profiles on a new experiment are smaller than 0.09, which demonstrates the applicability and generalization of the proposed two-stage thermal history prediction method in online applications for metal AM.
Comparison of Transfer Learning based Additive Manufacturing Models via A Case Study
Tang, Yifan, Dehaghani, M. Rahmani, Wang, G. Gary
Transfer learning (TL) based additive manufacturing (AM) modeling is an emerging field to reuse the data from historical products and mitigate the data insufficiency in modeling new products. Although some trials have been conducted recently, the inherent challenges of applying TL in AM modeling are seldom discussed, e.g., which source domain to use, how much target data is needed, and whether to apply data preprocessing techniques. This paper aims to answer those questions through a case study defined based on an open-source dataset about metal AM products. In the case study, five TL methods are integrated with decision tree regression (DTR) and artificial neural network (ANN) to construct six TL-based models, whose performances are then compared with the baseline DTR and ANN in a proposed validation framework. The comparisons are used to quantify the performance of applied TL methods and are discussed from the perspective of similarity, training data size, and data preprocessing. Finally, the source AM domain with larger qualitative similarity and a certain range of target-to-source training data size ratio are recommended. Besides, the data preprocessing should be performed carefully to balance the modeling performance and the performance improvement due to TL.
Personalized Interpretable Classification
He, Zengyou, Tang, Yifan, Hu, Lianyu, Jiang, Mudi, Liu, Yan
How to interpret a data mining model has received much attention recently, because people may distrust a black-box predictive model if they do not understand how the model works. Hence, it will be trustworthy if a model can provide transparent illustrations on how to make the decision. Although many rule-based interpretable classification algorithms have been proposed, all these existing solutions cannot directly construct an interpretable model to provide personalized prediction for each individual test sample. In this paper, we make a first step towards formally introducing personalized interpretable classification as a new data mining problem to the literature. In addition to the problem formulation on this new issue, we present a greedy algorithm called PIC (Personalized Interpretable Classifier) to identify a personalized rule for each individual test sample. To demonstrate the necessity, feasibility and advantages of such a personalized interpretable classification method, we conduct a series of empirical studies on real data sets. The experimental results show that: (1) The new problem formulation enables us to find interesting rules for test samples that may be missed by existing non-personalized classifiers. (2) Our algorithm can achieve the same-level predictive accuracy as those state-of-the-art (SOTA) interpretable classifiers. (3) On a real data set for predicting breast cancer metastasis, such a personalized interpretable classifier can outperform SOTA methods in terms of both accuracy and interpretability.