Goto

Collaborating Authors

 Tang, Jianheng


TS-ACL: A Time Series Analytic Continual Learning Framework for Privacy-Preserving and Class-Incremental Pattern Recognition

arXiv.org Artificial Intelligence

Class-incremental pattern recognition in time series is a significant problem, which aims to learn from continually arriving streaming data examples with incremental classes. A primary challenge in this problem is catastrophic forgetting, where the incorporation of new data samples causes the models to forget previously learned information. While the replay-based methods achieve promising results by storing historical data to address catastrophic forgetting, they come with the invasion of data privacy. On the other hand, the exemplar-free methods preserve privacy but suffer from significantly decreased accuracy. To address these challenges, we proposed TS-ACL, a novel Time Series Analytic Continual Learning framework for privacy-preserving and class-incremental pattern recognition. Identifying gradient descent as the root of catastrophic forgetting, TS-ACL transforms each update of the model into a gradient-free analytical learning process with a closed-form solution. By leveraging a pre-trained frozen encoder for embedding extraction, TS-ACL only needs to recursively update an analytic classifier in a lightweight manner. This way, TS-ACL simultaneously achieves non-forgetting, privacy preservation, and lightweight consumption, making it widely suitable for various applications, particularly in edge computing scenarios. Extensive experiments on five benchmark datasets confirm the superior and robust performance of TS-ACL compared to existing advanced methods. Code is available at https://github.com/asdasdczxczq/TS-ACL.


UniGAD: Unifying Multi-level Graph Anomaly Detection

arXiv.org Artificial Intelligence

Graph Anomaly Detection (GAD) aims to identify uncommon, deviated, or suspicious objects within graph-structured data. Existing methods generally focus on a single graph object type (node, edge, graph, etc.) and often overlook the inherent connections among different object types of graph anomalies. For instance, a money laundering transaction might involve an abnormal account and the broader community it interacts with. To address this, we present UniGAD, the first unified framework for detecting anomalies at node, edge, and graph levels jointly. Specifically, we develop the Maximum Rayleigh Quotient Subgraph Sampler (MRQSampler) that unifies multi-level formats by transferring objects at each level into graph-level tasks on subgraphs. We theoretically prove that MRQSampler maximizes the accumulated spectral energy of subgraphs (i.e., the Rayleigh quotient) to preserve the most significant anomaly information. To further unify multi-level training, we introduce a novel GraphStitch Network to integrate information across different levels, adjust the amount of sharing required at each level, and harmonize conflicting training goals. Comprehensive experiments show that UniGAD outperforms both existing GAD methods specialized for a single task and graph prompt-based approaches for multiple tasks, while also providing robust zero-shot task transferability.


GCoder: Improving Large Language Model for Generalized Graph Problem Solving

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated strong reasoning abilities, making them suitable for complex tasks such as graph computation. Traditional reasoning steps paradigm for graph problems is hindered by unverifiable steps, limited long-term reasoning, and poor generalization to graph variations. To overcome these limitations, we introduce GCoder, a code-based LLM designed to enhance problem-solving in generalized graph computation problems. Our method involves constructing an extensive training dataset, GraphWild, featuring diverse graph formats and algorithms. We employ a multi-stage training process, including Supervised Fine-Tuning (SFT) and Reinforcement Learning from Compiler Feedback (RLCF), to refine model capabilities. For unseen tasks, a hybrid retrieval technique is used to augment performance. Experiments demonstrate that GCoder outperforms GPT-4o, with an average accuracy improvement of 16.42% across various graph computational problems. Furthermore, GCoder efficiently manages large-scale graphs with millions of nodes and diverse input formats, overcoming the limitations of previous models focused on the reasoning steps paradigm. This advancement paves the way for more intuitive and effective graph problem-solving using LLMs. Code and data are available at here: https://github.com/Bklight999/WWW25-GCoder/tree/master.


Graph Pre-Training Models Are Strong Anomaly Detectors

arXiv.org Artificial Intelligence

Graph Anomaly Detection (GAD) is a challenging and practical research topic where Graph Neural Networks (GNNs) have recently shown promising results. The effectiveness of existing GNNs in GAD has been mainly attributed to the simultaneous learning of node representations and the classifier in an end-to-end manner. Meanwhile, graph pre-training, the two-stage learning paradigm such as DGI and GraphMAE, has shown potential in leveraging unlabeled graph data to enhance downstream tasks, yet its impact on GAD remains under-explored. In this work, we show that graph pre-training models are strong graph anomaly detectors. Specifically, we demonstrate that pre-training is highly competitive, markedly outperforming the state-of-the-art end-to-end training models when faced with limited supervision. To understand this phenomenon, we further uncover pre-training enhances the detection of distant, under-represented, unlabeled anomalies that go beyond 2-hop neighborhoods of known anomalies, shedding light on its superior performance against end-to-end models. Moreover, we extend our examination to the potential of pre-training in graph-level anomaly detection. We envision this work to stimulate a re-evaluation of pre-training's role in GAD and offer valuable insights for future research.


GraphWiz: An Instruction-Following Language Model for Graph Problems

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved impressive success across several fields, but their proficiency in understanding and resolving complex graph problems is less explored. To bridge this gap, we introduce GraphInstruct, a novel and comprehensive instruction-tuning dataset designed to equip language models with the ability to tackle a broad spectrum of graph problems using explicit reasoning paths. Utilizing GraphInstruct, we build GraphWiz, an open-source language model capable of resolving various graph problem types while generating clear reasoning processes. To enhance the model's capability and reliability, we incorporate the Direct Preference Optimization (DPO) framework into the graph problem-solving context. The enhanced model, GraphWiz-DPO, achieves an average accuracy of 65% across nine tasks with different complexity levels, surpassing GPT-4 which has an average accuracy of 43.8%. Moreover, our research delves into the delicate balance between training data volume and model performance, highlighting the potential for overfitting with increased data. We also explore the transferability of the model's reasoning ability across different graph tasks, indicating the model's adaptability and practical application potential. Our investigation offers a new blueprint and valuable insights for developing LLMs specialized in graph reasoning and problem-solving.


GraphArena: Benchmarking Large Language Models on Graph Computational Problems

arXiv.org Artificial Intelligence

The "arms race" of Large Language Models (LLMs) demands novel, challenging, and diverse benchmarks to faithfully examine their progresses. We introduce GraphArena, a benchmarking tool designed to evaluate LLMs on graph computational problems using million-scale real-world graphs from diverse scenarios such as knowledge graphs, social networks, and molecular structures. GraphArena offers a suite of 10 computational tasks, encompassing four polynomial-time (e.g., Shortest Distance) and six NP-complete challenges (e.g., Travelling Salesman Problem). It features a rigorous evaluation framework that classifies LLM outputs as correct, suboptimal (feasible but not optimal), or hallucinatory (properly formatted but infeasible). Evaluation of 10 leading LLMs, including GPT-4o and LLaMA3-70B-Instruct, reveals that even top-performing models struggle with larger, more complex graph problems and exhibit hallucination issues. Despite the application of strategies such as chain-of-thought prompting, these issues remain unresolved.


4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on Relational DBs

arXiv.org Artificial Intelligence

Although RDBs store vast amounts of rich, informative data spread across interconnected tables, the progress of predictive machine learning models as applied to such tasks arguably falls well behind advances in other domains such as computer vision or natural language processing. This deficit stems, at least in part, from the lack of established/public RDB benchmarks as needed for training and evaluation purposes. As a result, related model development thus far often defaults to tabular approaches trained on ubiquitous single-table benchmarks, or on the relational side, graph-based alternatives such as GNNs applied to a completely different set of graph datasets devoid of tabular characteristics. To more precisely target RDBs lying at the nexus of these two complementary regimes, we explore a broad class of baseline models predicated on: (i) converting multi-table datasets into graphs using various strategies equipped with efficient subsampling, while preserving tabular characteristics; and (ii) trainable models with well-matched inductive biases that output predictions based on these input subgraphs. Then, to address the dearth of suitable public benchmarks and reduce siloed comparisons, we assemble a diverse collection of (i) large-scale RDB datasets and (ii) coincident predictive tasks. From a delivery standpoint, we operationalize the above four dimensions (4D) of exploration within a unified, scalable open-source toolbox called 4DBInfer. We conclude by presenting evaluations using 4DBInfer, the results of which highlight the importance of considering each such dimension in the design of RDB predictive models, as well as the limitations of more naive approaches such as simply joining adjacent tables. Our source code is released at https://github.com/awslabs/multi-table-benchmark .


GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection

arXiv.org Artificial Intelligence

With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a standard comprehensive setting, (2) whether GNNs can outperform traditional algorithms such as tree ensembles, and (3) how about their efficiency on large-scale graphs. In response, we introduce GADBench -- a benchmark tool dedicated to supervised anomalous node detection in static graphs. GADBench facilitates a detailed comparison across 29 distinct models on ten real-world GAD datasets, encompassing thousands to millions ($\sim$6M) nodes. Our main finding is that tree ensembles with simple neighborhood aggregation can outperform the latest GNNs tailored for the GAD task. We shed light on the current progress of GAD, setting a robust groundwork for subsequent investigations in this domain. GADBench is open-sourced at https://github.com/squareRoot3/GADBench.


Outlier-Robust Gromov-Wasserstein for Graph Data

arXiv.org Machine Learning

Gromov-Wasserstein (GW) distance is a powerful tool for comparing and aligning probability distributions supported on different metric spaces. Recently, GW has become the main modeling technique for aligning heterogeneous data for a wide range of graph learning tasks. However, the GW distance is known to be highly sensitive to outliers, which can result in large inaccuracies if the outliers are given the same weight as other samples in the objective function. To mitigate this issue, we introduce a new and robust version of the GW distance called RGW. RGW features optimistically perturbed marginal constraints within a Kullback-Leibler divergence-based ambiguity set. To make the benefits of RGW more accessible in practice, we develop a computationally efficient and theoretically provable procedure using Bregman proximal alternating linearized minimization algorithm. Through extensive experimentation, we validate our theoretical results and demonstrate the effectiveness of RGW on real-world graph learning tasks, such as subgraph matching and partial shape correspondence.


A Semi-supervised Sensing Rate Learning based CMAB Scheme to Combat COVID-19 by Trustful Data Collection in the Crowd

arXiv.org Artificial Intelligence

The recruitment of trustworthy and high-quality workers is an important research issue for MCS. Previous studies either assume that the qualities of workers are known in advance, or assume that the platform knows the qualities of workers once it receives their collected data. In reality, to reduce costs and thus maximize revenue, many strategic workers do not perform their sensing tasks honestly and report fake data to the platform, which is called False data attacks. And it is very hard for the platform to evaluate the authenticity of the received data. In this paper, an incentive mechanism named Semi-supervision based Combinatorial Multi-Armed Bandit reverse Auction (SCMABA) is proposed to solve the recruitment problem of multiple unknown and strategic workers in MCS. First, we model the worker recruitment as a multi-armed bandit reverse auction problem and design an UCB-based algorithm to separate the exploration and exploitation, regarding the Sensing Rates (SRs) of recruited workers as the gain of the bandit. Next, a Semi-supervised Sensing Rate Learning (SSRL) approach is proposed to quickly and accurately obtain the workers' SRs, which consists of two phases, supervision and self-supervision. Last, SCMABA is designed organically combining the SRs acquisition mechanism with multi-armed bandit reverse auction, where supervised SR learning is used in the exploration, and the self-supervised one is used in the exploitation. We theoretically prove that our SCMABA achieves truthfulness and individual rationality and exhibits outstanding performances of the SCMABA mechanism through in-depth simulations of real-world data traces.