Tang, Haoran
Why does in-context learning fail sometimes? Evaluating in-context learning on open and closed questions
Li, Xiang, Tang, Haoran, Chen, Siyu, Wang, Ziwei, Chen, Ryan, Abram, Marcin
We measure the performance of in-context learning as a function of task novelty and difficulty for open and closed questions. For that purpose, we created a novel benchmark consisting of hard scientific questions, each paired with a context of various relevancy. We show that counter-intuitively, a context that is more aligned with the topic does not always help more than a less relevant context. This effect is especially visible for open questions and questions of high difficulty or novelty. This result reveals a fundamental difference between the treatment of close-form and open-form questions by large-language models and shows a need for a more robust evaluation of in-context learning on the variety of different types of questions. It also poses a new question of how to optimally select a context for large language models, especially in the context of Retrieval Augmented Generation (RAG) systems. Our results suggest that the answer to this question can be highly application-dependent and might be contingent on factors including the format of the question, the perceived difficulty level of the questions, and the novelty or popularity of the information we seek.
Expert-Guided Extinction of Toxic Tokens for Debiased Generation
Sun, Xueyao, Shi, Kaize, Tang, Haoran, Xu, Guandong, Li, Qing
Large language models (LLMs) can elicit social bias during generations, especially when inference with toxic prompts. Controlling the sensitive attributes in generation encounters challenges in data distribution, generalizability, and efficiency. Specifically, fine-tuning and retrieval demand extensive unbiased corpus, while direct prompting requires meticulously curated instructions for correcting the output in multiple rounds of thoughts but poses challenges on memory and inference latency. In this work, we propose the Expert-Guided Extinction of Toxic Tokens for Debiased Generation (EXPOSED) to eliminate the undesired harmful outputs for LLMs without the aforementioned requirements. EXPOSED constructs a debiasing expert based on the abundant toxic corpus to expose and elicit the potentially dangerous tokens. It then processes the output to the LLMs and constructs a fair distribution by suppressing and attenuating the toxic tokens. EXPOSED is evaluated on fairness benchmarks over three LLM families. Extensive experiments demonstrate that compared with other baselines, the proposed EXPOSED significantly reduces the potential social bias while balancing fairness and generation performance.
Context Matters: Data-Efficient Augmentation of Large Language Models for Scientific Applications
Li, Xiang, Tang, Haoran, Chen, Siyu, Wang, Ziwei, Maravi, Anurag, Abram, Marcin
In this paper, we explore the challenges inherent to Large Language Models (LLMs) like GPT-4, particularly their propensity for hallucinations, logic mistakes, and incorrect conclusions when tasked with answering complex questions. The capacity of LLMs to present erroneous answers in a coherent and semantically rigorous manner further complicates the detection of factual inaccuracies. This issue is especially pronounced in fields that require specialized expertise. Our work delves into these challenges, aiming to enhance the understanding and mitigation of such errors, thereby contributing to the improvement of LLM accuracy and reliability in scientific and other specialized domains. Our findings reveal a non-linear relationship between the context's relevancy and the answers' measured quality. In addition, we demonstrate that with the correct calibration, it is possible to automate the grading procedure -- a finding suggesting that, at least to some degree, the LLMs can be used to self-examine the quality of their own performance. Finally, we describe an experimental platform that can be seen as a proof-of-concept of the techniques described in this work.
Retrieving Conditions from Reference Images for Diffusion Models
Tang, Haoran, Zhou, Xin, Deng, Jieren, Pan, Zhihong, Tian, Hao, Chaudhari, Pratik
Recent diffusion-based subject driven generative methods have enabled image generations with good fidelity for specific objects or human portraits. However, to achieve better versatility for applications, we argue that not only improved datasets and evaluations are desired, but also more careful methods to retrieve only relevant information from conditional images are anticipated. To this end, we propose an anime figures dataset RetriBooru-V1, with enhanced identity and clothing labels. We state new tasks enabled by this dataset, and introduce a new diversity metric to measure success in completing these tasks, quantifying the flexibility of image generations. We establish an RAG-inspired baseline method, designed to retrieve precise conditional information from reference images. Then, we compare with current methods on existing task to demonstrate the capability of the proposed method. Finally, we provide baseline experiment results on new tasks, and conduct ablation studies on the possible structural choices.
Weighted Joint Maximum Mean Discrepancy Enabled Multi-Source-Multi-Target Unsupervised Domain Adaptation Fault Diagnosis
Wang, Zixuan, Tang, Haoran, Wang, Haibo, Qin, Bo, Butala, Mark D., Shen, Weiming, Wang, Hongwei
Despite the remarkable results that can be achieved by data-driven intelligent fault diagnosis techniques, they presuppose the same distribution of training and test data as well as sufficient labeled data. Various operating states often exist in practical scenarios, leading to the problem of domain shift that hinders the effectiveness of fault diagnosis. While recent unsupervised domain adaptation methods enable cross-domain fault diagnosis, they struggle to effectively utilize information from multiple source domains and achieve effective diagnosis faults in multiple target domains simultaneously. In this paper, we innovatively proposed a weighted joint maximum mean discrepancy enabled multi-source-multi-target unsupervised domain adaptation (WJMMD-MDA), which realizes domain adaptation under multi-source-multi-target scenarios in the field of fault diagnosis for the first time. The proposed method extracts sufficient information from multiple labeled source domains and achieves domain alignment between source and target domains through an improved weighted distance loss. As a result, domain-invariant and discriminative features between multiple source and target domains are learned with cross-domain fault diagnosis realized. The performance of the proposed method is evaluated in comprehensive comparative experiments on three datasets, and the experimental results demonstrate the superiority of this method.
WEKA-Based: Key Features and Classifier for French of Five Countries
Li, Zeqian, Qiu, Keyu, Jiao, Chenxu, Zhu, Wen, Tang, Haoran
This paper describes a French dialect recognition system that will appropriately distinguish between different regional French dialects. A corpus of five regions - Monaco, French-speaking, Belgium, French-speaking Switzerland, French-speaking Canada and France, which is targeted forconstruction by the Sketch Engine. The content of the corpus is related to the four themes of eating, drinking, sleeping and living, which are closely linked to popular life. The experimental results were obtained through the processing of a python coded pre-processor and Waikato Environment for Knowledge Analysis (WEKA) data analytic tool which contains many filters and classifiers for machine learning.
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Tang, Haoran, Houthooft, Rein, Foote, Davis, Stooke, Adam, Chen, OpenAI Xi, Duan, Yan, Schulman, John, DeTurck, Filip, Abbeel, Pieter
Count-based exploration algorithms are known to perform near-optimally when used in conjunction with tabular reinforcement learning (RL) methods for solving small discrete Markov decision processes (MDPs). It is generally thought that count-based methods cannot be applied in high-dimensional state spaces, since most states will only occur once. Recent deep RL exploration strategies are able to deal with high-dimensional continuous state spaces through complex heuristics, often relying on optimism in the face of uncertainty or intrinsic motivation. In this work, we describe a surprising finding: a simple generalization of the classic count-based approach can reach near state-of-the-art performance on various high-dimensional and/or continuous deep RL benchmarks. States are mapped to hash codes, which allows to count their occurrences with a hash table.
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Nachum, Ofir, Tang, Haoran, Lu, Xingyu, Gu, Shixiang, Lee, Honglak, Levine, Sergey
Hierarchical reinforcement learning has demonstrated significant success at solving difficult reinforcement learning (RL) tasks. Previous works have motivated the use of hierarchy by appealing to a number of intuitive benefits, including learning over temporally extended transitions, exploring over temporally extended periods, and training and exploring in a more semantically meaningful action space, among others. However, in fully observed, Markovian settings, it is not immediately clear why hierarchical RL should provide benefits over standard "shallow" RL architectures. In this work, we isolate and evaluate the claimed benefits of hierarchical RL on a suite of tasks encompassing locomotion, navigation, and manipulation. Surprisingly, we find that most of the observed benefits of hierarchy can be attributed to improved exploration, as opposed to easier policy learning or imposed hierarchical structures. Given this insight, we present exploration techniques inspired by hierarchy that achieve performance competitive with hierarchical RL while at the same time being much simpler to use and implement.
Modular Architecture for StarCraft II with Deep Reinforcement Learning
Lee, Dennis, Tang, Haoran, Zhang, Jeffrey O, Xu, Huazhe, Darrell, Trevor, Abbeel, Pieter
We present a novel modular architecture for StarCraft II AI. The architecture splits responsibilities between multiple modules that each control one aspect of the game, such as build-order selection or tactics. A centralized scheduler reviews macros suggested by all modules and decides their order of execution. An updater keeps track of environment changes and instantiates macros into series of executable actions. Modules in this framework can be optimized independently or jointly via human design, planning, or reinforcement learning. We apply deep reinforcement learning techniques to training two out of six modules of a modular agent with self-play, achieving 94% or 87% win rates against the "Harder" (level 5) built-in Blizzard bot in Zerg vs. Zerg matches, with or without fog-of-war.
Modular Architecture for StarCraft II with Deep Reinforcement Learning
Lee, Dennis (University of California, Berkeley) | Tang, Haoran (University of California, Berkeley) | Zhang, Jeffrey O. (University of California, Berkeley) | Xu, Huazhe (University of California, Berkeley) | Darrell, Trevor (University of California, Berkeley) | Abbeel, Pieter (University of California, Berkeley)
We present a novel modular architecture for StarCraft II AI. The architecture splits responsibilities between multiple modules that each control one aspect of the game, such as buildorder selection or tactics. A centralized scheduler reviews macros suggested by all modules and decides their order of execution. An updater keeps track of environment changes and instantiates macros into series of executable actions. Modules in this framework can be optimized independently or jointly via human design, planning, or reinforcement learning. We present the first result of applying deep reinforcement learning techniques to training a modular agent with selfplay, achieving 92% or 86% win rates against the ”Harder” (level 5) built-in Blizzard bot in Zerg vs. Zerg matches, with or without fog-of-war.