Goto

Collaborating Authors

 Tang, Chia-Wei


ENTER: Event Based Interpretable Reasoning for VideoQA

arXiv.org Artificial Intelligence

In this paper, we present ENTER, an interpretable Video Question Answering (VideoQA) system based on event graphs. Event graphs convert videos into graphical representations, where video events form the nodes and event-event relationships (temporal/causal/hierarchical) form the edges. This structured representation offers many benefits: 1) Interpretable VideoQA via generated code that parses event-graph; 2) Incorporation of contextual visual information in the reasoning process (code generation) via event graphs; 3) Robust VideoQA via Hierarchical Iterative Update of the event graphs. Existing interpretable VideoQA systems are often top-down, disregarding low-level visual information in the reasoning plan generation, and are brittle. While bottom-up approaches produce responses from visual data, they lack interpretability. Experimental results on NExT-QA, IntentQA, and EgoSchema demonstrate that not only does our method outperform existing top-down approaches while obtaining competitive performance against bottom-up approaches, but more importantly, offers superior interpretability and explainability in the reasoning process.


MetaSumPerceiver: Multimodal Multi-Document Evidence Summarization for Fact-Checking

arXiv.org Artificial Intelligence

Fact-checking real-world claims often requires reviewing multiple multimodal documents to assess a claim's truthfulness, which is a highly laborious and time-consuming task. In this paper, we present a summarization model designed to generate claim-specific summaries useful for fact-checking from multimodal, multi-document datasets. The model takes inputs in the form of documents, images, and a claim, with the objective of assisting in fact-checking tasks. We introduce a dynamic perceiver-based model that can handle inputs from multiple modalities of arbitrary lengths. To train our model, we leverage a novel reinforcement learning-based entailment objective to generate summaries that provide evidence distinguishing between different truthfulness labels. To assess the efficacy of our approach, we conduct experiments on both an existing benchmark and a new dataset of multi-document claims that we contribute. Our approach outperforms the SOTA approach by 4.6% in the claim verification task on the MOCHEG dataset and demonstrates strong performance on our new Multi-News-Fact-Checking dataset.