Goto

Collaborating Authors

 Tang, Cheng


An explainable transformer circuit for compositional generalization

arXiv.org Artificial Intelligence

Compositional generalization-the systematic combination of known components into novel structures-remains a core challenge in cognitive science and machine learning. Although transformer-based large language models can exhibit strong performance on certain compositional tasks, the underlying mechanisms driving these abilities remain opaque, calling into question their interpretability. In this work, we identify and mechanistically interpret the circuit responsible for compositional induction in a compact transformer. Using causal ablations, we validate the circuit and formalize its operation using a program-like description. We further demonstrate that this mechanistic understanding enables precise activation edits to steer the model's behavior predictably. Our findings advance the understanding of complex behaviors in transformers and highlight such insights can provide a direct pathway for model control.


Knowledge Distillation in RNN-Attention Models for Early Prediction of Student Performance

arXiv.org Artificial Intelligence

Educational data mining (EDM) is a part of applied computing that focuses on automatically analyzing data from learning contexts. Early prediction for identifying at-risk students is a crucial and widely researched topic in EDM research. It enables instructors to support at-risk students to stay on track, preventing student dropout or failure. Previous studies have predicted students' learning performance to identify at-risk students by using machine learning on data collected from e-learning platforms. However, most studies aimed to identify at-risk students utilizing the entire course data after the course finished. This does not correspond to the real-world scenario that at-risk students may drop out before the course ends. To address this problem, we introduce an RNN-Attention-KD (knowledge distillation) framework to predict at-risk students early throughout a course. It leverages the strengths of Recurrent Neural Networks (RNNs) in handling time-sequence data to predict students' performance at each time step and employs an attention mechanism to focus on relevant time steps for improved predictive accuracy. At the same time, KD is applied to compress the time steps to facilitate early prediction. In an empirical evaluation, RNN-Attention-KD outperforms traditional neural network models in terms of recall and F1-measure. For example, it obtained recall and F1-measure of 0.49 and 0.51 for Weeks 1--3 and 0.51 and 0.61 for Weeks 1--6 across all datasets from four years of a university course. Then, an ablation study investigated the contributions of different knowledge transfer methods (distillation objectives). We found that hint loss from the hidden layer of RNN and context vector loss from the attention module on RNN could enhance the model's prediction performance for identifying at-risk students. These results are relevant for EDM researchers employing deep learning models.


Robust Offline Reinforcement Learning with Linearly Structured $f$-Divergence Regularization

arXiv.org Machine Learning

The Distributionally Robust Markov Decision Process (DRMDP) is a popular framework for addressing dynamics shift in reinforcement learning by learning policies robust to the worst-case transition dynamics within a constrained set. However, solving its dual optimization oracle poses significant challenges, limiting theoretical analysis and computational efficiency. The recently proposed Robust Regularized Markov Decision Process (RRMDP) replaces the uncertainty set constraint with a regularization term on the value function, offering improved scalability and theoretical insights. Yet, existing RRMDP methods rely on unstructured regularization, often leading to overly conservative policies by considering transitions that are unrealistic. To address these issues, we propose a novel framework, the $d$-rectangular linear robust regularized Markov decision process ($d$-RRMDP), which introduces a linear latent structure into both transition kernels and regularization. For the offline RL setting, where an agent learns robust policies from a pre-collected dataset in the nominal environment, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI), employing linear function approximation and $f$-divergence based regularization terms on transition kernels. We provide instance-dependent upper bounds on the suboptimality gap of R2PVI policies, showing these bounds depend on how well the dataset covers state-action spaces visited by the optimal robust policy under robustly admissible transitions. This term is further shown to be fundamental to $d$-RRMDPs via information-theoretic lower bounds. Finally, numerical experiments validate that R2PVI learns robust policies and is computationally more efficient than methods for constrained DRMDPs.


RoboSync: Efficient Real-Time Operating System for Social Robots with Customizable Behaviour

arXiv.org Artificial Intelligence

Traditional robotic systems require complex implementations that are not always accessible or easy to use for Human-Robot Interaction (HRI) application developers. With the aim of simplifying the implementation of HRI applications, this paper introduces a novel real-time operating system (RTOS) designed for customizable HRI - RoboSync. By creating multi-level abstraction layers, the system enables users to define complex emotional and behavioral models without needing deep technical expertise. The system's modular architecture comprises a behavior modeling layer, a machine learning plugin configuration layer, a sensor checks customization layer, a scheduler that fits the need of HRI, and a communication and synchronization layer. This approach not only promotes ease of use without highly specialized skills but also ensures real-time responsiveness and adaptability. The primary functionality of the RTOS has been implemented for proof of concept and was tested on a CortexM4 microcontroller, demonstrating its potential for a wide range of lightweight simple-to-implement social robotics applications.


On the Feasibility of Fingerprinting Collaborative Robot Traffic

arXiv.org Artificial Intelligence

This study examines privacy risks in collaborative robotics, focusing on the potential for traffic analysis in encrypted robot communications. While previous research has explored low-level command recovery, our work investigates high-level motion recovery from command message sequences. We evaluate the efficacy of traditional website fingerprinting techniques (k-FP, KNN, and CUMUL) and their limitations in accurately identifying robotic actions due to their inability to capture detailed temporal relationships. To address this, we introduce a traffic classification approach using signal processing techniques, demonstrating high accuracy in action identification and highlighting the vulnerability of encrypted communications to privacy breaches. Additionally, we explore defenses such as packet padding and timing manipulation, revealing the challenges in balancing traffic analysis resistance with network efficiency. Our findings emphasize the need for continued development of practical defenses in robotic privacy and security.


Augmented Kinesthetic Teaching: Enhancing Task Execution Efficiency through Intuitive Human Instructions

arXiv.org Artificial Intelligence

In this paper, we present a complete and efficient implementation of a knowledge-sharing augmented kinesthetic teaching approach for efficient task execution in robotics. Our augmented kinesthetic teaching method integrates intuitive human feedback, including verbal, gesture, gaze, and physical guidance, to facilitate the extraction of multiple layers of task information including control type, attention direction, input and output type, action state change trigger, etc., enhancing the adaptability and autonomy of robots during task execution. We propose an efficient Programming by Demonstration (PbD) framework for users with limited technical experience to teach the robot in an intuitive manner. The proposed framework provides an interface for such users to teach customized tasks using high-level commands, with the goal of achieving a smoother teaching experience and task execution. This is demonstrated with the sample task of pouring water.


On the tightness of linear relaxation based robustness certification methods

arXiv.org Artificial Intelligence

There has been a rapid development and interest in adversarial training and defenses in the machine learning community in the recent years. One line of research focuses on improving the performance and efficiency of adversarial robustness certificates for neural networks \cite{gowal:19, wong_zico:18, raghunathan:18, WengTowardsFC:18, wong:scalable:18, singh:convex_barrier:19, Huang_etal:19, single-neuron-relax:20, Zhang2020TowardsSA}. While each providing a certification to lower (or upper) bound the true distortion under adversarial attacks via relaxation, less studied was the tightness of relaxation. In this paper, we analyze a family of linear outer approximation based certificate methods via a meta algorithm, IBP-Lin. The aforementioned works often lack quantitative analysis to answer questions such as how does the performance of the certificate method depend on the network configuration and the choice of approximation parameters. Under our framework, we make a first attempt at answering these questions, which reveals that the tightness of linear approximation based certification can depend heavily on the configuration of the trained networks.


Neural document expansion for ad-hoc information retrieval

arXiv.org Artificial Intelligence

Recently, Nogueira et al. [2019] proposed a new approach to document expansion based on a neural Seq2Seq model, showing significant improvement on short text retrieval task. However, this approach needs a large amount of in-domain training data. In this paper, we show that this neural document expansion approach can be effectively adapted to standard IR tasks, where labels are scarce and many long documents are present.


Exponentially convergent stochastic k-PCA without variance reduction

arXiv.org Machine Learning

We show, both theoretically and empirically, that the algorithm naturally adapts to data low-rankness and converges exponentially fast to the ground-truth principal subspace. Notably, our result suggests that despite various recent efforts to accelerate the convergence of stochastic-gradient based methods by adding a O(n)-time variance reduction step, for the k-PCA problem, a truly online SGD variant suffices to achieve exponential convergence on intrinsically low-rank data.


When do random forests fail?

Neural Information Processing Systems

Random forests are learning algorithms that build large collections of random trees and make predictions by averaging the individual tree predictions. In this paper, we consider various tree constructions and examine how the choice of parameters affects the generalization error of the resulting random forests as the sample size goes to infinity. We show that subsampling of data points during the tree construction phase is important: Forests can become inconsistent with either no subsampling or too severe subsampling. As a consequence, even highly randomized trees can lead to inconsistent forests if no subsampling is used, which implies that some of the commonly used setups for random forests can be inconsistent. As a second consequence we can show that trees that have good performance in nearest-neighbor search can be a poor choice for random forests.