Goto

Collaborating Authors

 Tang, Chen


Residual Q-Learning: Offline and Online Policy Customization without Value

arXiv.org Artificial Intelligence

Imitation Learning (IL) is a widely used framework for learning imitative behavior from demonstrations. It is especially appealing for solving complex real-world tasks where handcrafting reward function is difficult, or when the goal is to mimic human expert behavior. However, the learned imitative policy can only follow the behavior in the demonstration. When applying the imitative policy, we may need to customize the policy behavior to meet different requirements coming from diverse downstream tasks. Meanwhile, we still want the customized policy to maintain its imitative nature. To this end, we formulate a new problem setting called policy customization. It defines the learning task as training a policy that inherits the characteristics of the prior policy while satisfying some additional requirements imposed by a target downstream task. We propose a novel and principled approach to interpret and determine the trade-off between the two task objectives. Specifically, we formulate the customization problem as a Markov Decision Process (MDP) with a reward function that combines 1) the inherent reward of the demonstration; and 2) the add-on reward specified by the downstream task. We propose a novel framework, Residual Q-learning, which can solve the formulated MDP by leveraging the prior policy without knowing the inherent reward or value function of the prior policy. We derive a family of residual Q-learning algorithms that can realize offline and online policy customization, and show that the proposed algorithms can effectively accomplish policy customization tasks in various environments. Demo videos and code are available on our website: https://sites.google.com/view/residualq-learning.


A Cross-Attention Augmented Model for Event-Triggered Context-Aware Story Generation

arXiv.org Artificial Intelligence

Despite recent advancements, existing story generation systems continue to encounter difficulties in effectively incorporating contextual and event features, which greatly influence the quality of generated narratives. To tackle these challenges, we introduce a novel neural generation model, EtriCA, that enhances the relevance and coherence of generated stories by employing a cross-attention mechanism to map context features onto event sequences through residual mapping. This feature capturing mechanism enables our model to exploit logical relationships between events more effectively during the story generation process. To further enhance our proposed model, we employ a post-training framework for knowledge enhancement (KeEtriCA) on a large-scale book corpus. This allows EtriCA to adapt to a wider range of data samples. This results in approximately 5\% improvement in automatic metrics and over 10\% improvement in human evaluation. We conduct extensive experiments, including comparisons with state-of-the-art (SOTA) baseline models, to evaluate the performance of our framework on story generation. The experimental results, encompassing both automated metrics and human assessments, demonstrate the superiority of our model over existing state-of-the-art baselines. These results underscore the effectiveness of our model in leveraging context and event features to improve the quality of generated narratives.


DAGC: Data-Volume-Aware Adaptive Sparsification Gradient Compression for Distributed Machine Learning in Mobile Computing

arXiv.org Artificial Intelligence

Distributed machine learning (DML) in mobile environments faces significant communication bottlenecks. Gradient compression has emerged as an effective solution to this issue, offering substantial benefits in environments with limited bandwidth and metered data. Yet, they encounter severe performance drop in non-IID environments due to a one-size-fits-all compression approach, which does not account for the varying data volumes across workers. Assigning varying compression ratios to workers with distinct data distributions and volumes is thus a promising solution. This study introduces an analysis of distributed SGD with non-uniform compression, which reveals that the convergence rate (indicative of the iterations needed to achieve a certain accuracy) is influenced by compression ratios applied to workers with differing volumes. Accordingly, we frame relative compression ratio assignment as an $n$-variables chi-square nonlinear optimization problem, constrained by a fixed and limited communication budget. We propose DAGC-R, which assigns the worker handling larger data volumes the conservative compression. Recognizing the computational limitations of mobile devices, we DAGC-A, which are computationally less demanding and enhances the robustness of the absolute gradient compressor in non-IID scenarios. Our experiments confirm that both the DAGC-A and DAGC-R can achieve better performance when dealing with highly imbalanced data volume distribution and restricted communication.


ACL Anthology Helper: A Tool to Retrieve and Manage Literature from ACL Anthology

arXiv.org Artificial Intelligence

The ACL Anthology is an online repository that serves as a comprehensive collection of publications in the field of natural language processing (NLP) and computational linguistics (CL). This paper presents a tool called ``ACL Anthology Helper''. It automates the process of parsing and downloading papers along with their meta-information, which are then stored in a local MySQL database. This allows for efficient management of the local papers using a wide range of operations, including "where," "group," "order," and more. By providing over 20 operations, this tool significantly enhances the retrieval of literature based on specific conditions. Notably, this tool has been successfully utilised in writing a survey paper (Tang et al.,2022a). By introducing the ACL Anthology Helper, we aim to enhance researchers' ability to effectively access and organise literature from the ACL Anthology. This tool offers a convenient solution for researchers seeking to explore the ACL Anthology's vast collection of publications while allowing for more targeted and efficient literature retrieval.


Outracing Human Racers with Model-based Planning and Control for Time-trial Racing

arXiv.org Artificial Intelligence

Autonomous racing has become a popular sub-topic of autonomous driving in recent years. The goal of autonomous racing research is to develop software to control the vehicle at its limit of handling and achieve human-level racing performance. In this work, we investigate how to approach human expert-level racing performance with model-based planning and control methods using the high-fidelity racing simulator Gran Turismo Sport (GTS). GTS enables a unique opportunity for autonomous racing research, as many recordings of racing from highly skilled human players can served as expert emonstrations. By comparing the performance of the autonomous racing software with human experts, we better understand the performance gap of existing software and explore new methodologies in a principled manner. In particular, we focus on the commonly adopted model-based racing framework, consisting of an offline trajectory planner and an online Model Predictive Control-based (MPC) tracking controller. We thoroughly investigate the design challenges from three perspective, namely vehicle model, planning algorithm, and controller design, and propose novel solutions to improve the baseline approach toward human expert-level performance. We showed that the proposed control framework can achieve top 0.95% lap time among human-expert players in GTS. Furthermore, we conducted comprehensive ablation studies to validate the necessity of proposed modules, and pointed out potential future directions to reach human-best performance.


Enhancing Biomedical Lay Summarisation with External Knowledge Graphs

arXiv.org Artificial Intelligence

Previous approaches for automatic lay summarisation are exclusively reliant on the source article that, given it is written for a technical audience (e.g., researchers), is unlikely to explicitly define all technical concepts or state all of the background information that is relevant for a lay audience. We address this issue by augmenting eLife, an existing biomedical lay summarisation dataset, with article-specific knowledge graphs, each containing detailed information on relevant biomedical concepts. Using both automatic and human evaluations, we systematically investigate the effectiveness of three different approaches for incorporating knowledge graphs within lay summarisation models, with each method targeting a distinct area of the encoder-decoder model architecture. Our results confirm that integrating graph-based domain knowledge can significantly benefit lay summarisation by substantially increasing the readability of generated text and improving the explanation of technical concepts.


Improving Biomedical Abstractive Summarisation with Knowledge Aggregation from Citation Papers

arXiv.org Artificial Intelligence

Abstracts derived from biomedical literature possess distinct domain-specific characteristics, including specialised writing styles and biomedical terminologies, which necessitate a deep understanding of the related literature. As a result, existing language models struggle to generate technical summaries that are on par with those produced by biomedical experts, given the absence of domain-specific background knowledge. This paper aims to enhance the performance of language models in biomedical abstractive summarisation by aggregating knowledge from external papers cited within the source article. We propose a novel attention-based citation aggregation model that integrates domain-specific knowledge from citation papers, allowing neural networks to generate summaries by leveraging both the paper content and relevant knowledge from citation papers. Furthermore, we construct and release a large-scale biomedical summarisation dataset that serves as a foundation for our research. Extensive experiments demonstrate that our model outperforms state-of-the-art approaches and achieves substantial improvements in abstractive biomedical text summarisation.


Guided Online Distillation: Promoting Safe Reinforcement Learning by Offline Demonstration

arXiv.org Artificial Intelligence

Safe Reinforcement Learning (RL) aims to find a policy that achieves high rewards while satisfying cost constraints. When learning from scratch, safe RL agents tend to be overly conservative, which impedes exploration and restrains the overall performance. In many realistic tasks, e.g. autonomous driving, large-scale expert demonstration data are available. We argue that extracting expert policy from offline data to guide online exploration is a promising solution to mitigate the conserveness issue. Large-capacity models, e.g. decision transformers (DT), have been proven to be competent in offline policy learning. However, data collected in real-world scenarios rarely contain dangerous cases (e.g., collisions), which makes it prohibitive for the policies to learn safety concepts. Besides, these bulk policy networks cannot meet the computation speed requirements at inference time on real-world tasks such as autonomous driving. To this end, we propose Guided Online Distillation (GOLD), an offline-to-online safe RL framework. GOLD distills an offline DT policy into a lightweight policy network through guided online safe RL training, which outperforms both the offline DT policy and online safe RL algorithms. Experiments in both benchmark safe RL tasks and real-world driving tasks based on the Waymo Open Motion Dataset (WOMD) demonstrate that GOLD can successfully distill lightweight policies and solve decision-making problems in challenging safety-critical scenarios.


Quantifying Agent Interaction in Multi-agent Reinforcement Learning for Cost-efficient Generalization

arXiv.org Artificial Intelligence

Generalization poses a significant challenge in Multi-agent Reinforcement Learning (MARL). The extent to which an agent is influenced by unseen co-players depends on the agent's policy and the specific scenario. A quantitative examination of this relationship sheds light on effectively training agents for diverse scenarios. In this study, we present the Level of Influence (LoI), a metric quantifying the interaction intensity among agents within a given scenario and environment. We observe that, generally, a more diverse set of co-play agents during training enhances the generalization performance of the ego agent; however, this improvement varies across distinct scenarios and environments. LoI proves effective in predicting these improvement disparities within specific scenarios. Furthermore, we introduce a LoI-guided resource allocation method tailored to train a set of policies for diverse scenarios under a constrained budget. Our results demonstrate that strategic resource allocation based on LoI can achieve higher performance than uniform allocation under the same computation budget.


Effective Distillation of Table-based Reasoning Ability from LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, their remarkable parameter size and their impressive high requirement of computing resources pose challenges for their practical deployment. Recent research has revealed that specific capabilities of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation. Some studies explore the potential of leveraging LLMs to perform table-based reasoning. Nevertheless, prior to our work, there has been no investigation into the prospect of specialising table reasoning skills in smaller models specifically tailored for table-to-text generation tasks. In this paper, we propose a novel table-based reasoning distillation, with the aim of distilling distilling LLMs into tailored, smaller models specifically designed for table-based reasoning task. Experimental results have shown that a 0.22 billion parameter model (Flan-T5-base) fine-tuned using distilled data, not only achieves a significant improvement compared to traditionally fine-tuned baselines but also surpasses specific LLMs like gpt-3.5-turbo on the scientific table-to-text generation dataset (SciGen). The code and data are released in https://github.com/Bernard-Yang/TableDistill.