Goto

Collaborating Authors

 Tang, Chao


The R2D2 Deep Neural Network Series for Scalable Non-Cartesian Magnetic Resonance Imaging

arXiv.org Artificial Intelligence

We introduce the R2D2 Deep Neural Network (DNN) series paradigm for fast and scalable image reconstruction from highly-accelerated non-Cartesian k-space acquisitions in Magnetic Resonance Imaging (MRI). While unrolled DNN architectures provide a robust image formation approach via data-consistency layers, embedding non-uniform fast Fourier transform operators in a DNN can become impractical to train at large scale, e.g in 2D MRI with a large number of coils, or for higher-dimensional imaging. Plug-and-play approaches that alternate a learned denoiser blind to the measurement setting with a data-consistency step are not affected by this limitation but their highly iterative nature implies slow reconstruction. To address this scalability challenge, we leverage the R2D2 paradigm that was recently introduced to enable ultra-fast reconstruction for large-scale Fourier imaging in radio astronomy. R2D2's reconstruction is formed as a series of residual images iteratively estimated as outputs of DNN modules taking the previous iteration's data residual as input. The method can be interpreted as a learned version of the Matching Pursuit algorithm. A series of R2D2 DNN modules were sequentially trained in a supervised manner on the fastMRI dataset and validated for 2D multi-coil MRI in simulation and on real data, targeting highly under-sampled radial k-space sampling. Results suggest that a series with only few DNNs achieves superior reconstruction quality over its unrolled incarnation R2D2-Net (whose training is also much less scalable), and over the state-of-the-art diffusion-based "Decomposed Diffusion Sampler" approach (also characterised by a slower reconstruction process).


Towards a robust R2D2 paradigm for radio-interferometric imaging: revisiting DNN training and architecture

arXiv.org Artificial Intelligence

The R2D2 Deep Neural Network (DNN) series was recently introduced for image formation in radio interferometry. It can be understood as a learned version of CLEAN, whose minor cycles are substituted with DNNs. We revisit R2D2 on the grounds of series convergence, training methodology, and DNN architecture, improving its robustness in terms of generalisability beyond training conditions, capability to deliver high data fidelity, and epistemic uncertainty. Firstly, while still focusing on telescope-specific training, we enhance the learning process by randomising Fourier sampling integration times, incorporating multi-scan multi-noise configurations, and varying imaging settings, including pixel resolution and visibility-weighting scheme. Secondly, we introduce a convergence criterion whereby the reconstruction process stops when the data residual is compatible with noise, rather than simply using all available DNNs. This not only increases the reconstruction efficiency by reducing its computational cost, but also refines training by pruning out the data/image pairs for which optimal data fidelity is reached before training the next DNN. Thirdly, we substitute R2D2's early U-Net DNN with a novel architecture (U-WDSR) combining U-Net and WDSR, which leverages wide activation, dense connections, weight normalisation, and low-rank convolution to improve feature reuse and reconstruction precision. As previously, R2D2 was trained for monochromatic intensity imaging with the Very Large Array (VLA) at fixed $512 \times 512$ image size. Simulations on a wide range of inverse problems and a case study on real data reveal that the new R2D2 model consistently outperforms its earlier version in image reconstruction quality, data fidelity, and epistemic uncertainty.


HGDiffuser: Efficient Task-Oriented Grasp Generation via Human-Guided Grasp Diffusion Models

arXiv.org Artificial Intelligence

Task-oriented grasping (TOG) is essential for robots to perform manipulation tasks, requiring grasps that are both stable and compliant with task-specific constraints. Humans naturally grasp objects in a task-oriented manner to facilitate subsequent manipulation tasks. By leveraging human grasp demonstrations, current methods can generate high-quality robotic parallel-jaw task-oriented grasps for diverse objects and tasks. However, they still encounter challenges in maintaining grasp stability and sampling efficiency. These methods typically rely on a two-stage process: first performing exhaustive task-agnostic grasp sampling in the 6-DoF space, then applying demonstration-induced constraints (e.g., contact regions and wrist orientations) to filter candidates. This leads to inefficiency and potential failure due to the vast sampling space. To address this, we propose the Human-guided Grasp Diffuser (HGDiffuser), a diffusion-based framework that integrates these constraints into a guided sampling process. Through this approach, HGDiffuser directly generates 6-DoF task-oriented grasps in a single stage, eliminating exhaustive task-agnostic sampling. Furthermore, by incorporating Diffusion Transformer (DiT) blocks as the feature backbone, HGDiffuser improves grasp generation quality compared to MLP-based methods. Experimental results demonstrate that our approach significantly improves the efficiency of task-oriented grasp generation, enabling more effective transfer of human grasping strategies to robotic systems. To access the source code and supplementary videos, visit https://sites.google.com/view/hgdiffuser.


FUNCTO: Function-Centric One-Shot Imitation Learning for Tool Manipulation

arXiv.org Artificial Intelligence

Abstract--Learning tool use from a single human demonstration video offers a highly intuitive and efficient approach to robot teaching. While humans can effortlessly generalize a demonstrated tool manipulation skill to diverse tools that support the same function (e.g., pouring with a mug versus a teapot), current one-shot imitation learning (OSIL) methods struggle to achieve this. A key challenge lies in establishing functional correspondences between demonstration and test tools, considering significant geometric variations among tools with the same function (i.e., intra-function variations). To address this challenge, we propose FUNCTO (Function-Centric OSIL for Tool Manipulation), an OSIL method that establishes function-centric correspondences with a 3D functional keypoint representation, enabling robots to generalize tool manipulation skills from a single human demonstration video to novel tools with the same function despite significant intra-function variations. We evaluate FUNCTO against exiting modular OSIL methods and end-to-end behavioral cloning methods through real-robot experiments on diverse tool manipulation tasks. The results demonstrate the superiority of FUNCTO when generalizing to novel tools with intra-function geometric variations. More details are available at https://sites.google.com/view/functo. The ability to use tools has long been recognized as a hallmark of human intelligence [1]. Endowing robots with the same capability holds the promise of unlocking a wide range of downstream tasks and applications [2, 3, 4]. As a step towards this goal, we tackle the problem of one-shot imitation learning (OSIL) for tool manipulation, which involves teaching robots a tool manipulation skill with a single human demonstration video. Previous OSIL methods [4, 5, 6, 7, 8, 9, 10] above, it remains a non-trivial challenge for robots due assume that tools supporting the same function share highly to significant geometric variations (e.g., shape, size, topology) similar shapes or appearances.


RTAGrasp: Learning Task-Oriented Grasping from Human Videos via Retrieval, Transfer, and Alignment

arXiv.org Artificial Intelligence

Task-oriented grasping (TOG) is crucial for robots to accomplish manipulation tasks, requiring the determination of TOG positions and directions. Existing methods either rely on costly manual TOG annotations or only extract coarse grasping positions or regions from human demonstrations, limiting their practicality in real-world applications. To address these limitations, we introduce RTAGrasp, a Retrieval, Transfer, and Alignment framework inspired by human grasping strategies. Specifically, our approach first effortlessly constructs a robot memory from human grasping demonstration videos, extracting both TOG position and direction constraints. Then, given a task instruction and a visual observation of the target object, RTAGrasp retrieves the most similar human grasping experience from its memory and leverages semantic matching capabilities of vision foundation models to transfer the TOG constraints to the target object in a training-free manner. Finally, RTAGrasp aligns the transferred TOG constraints with the robot's action for execution. Evaluations on the public TOG benchmark, TaskGrasp dataset, show the competitive performance of RTAGrasp on both seen and unseen object categories compared to existing baseline methods. Real-world experiments further validate its effectiveness on a robotic arm. Our code, appendix, and video are available at \url{https://sites.google.com/view/rtagrasp/home}.


Estimating before Debiasing: A Bayesian Approach to Detaching Prior Bias in Federated Semi-Supervised Learning

arXiv.org Artificial Intelligence

Federated Semi-Supervised Learning (FSSL) leverages both labeled and unlabeled data on clients to collaboratively train a model.In FSSL, the heterogeneous data can introduce prediction bias into the model, causing the model's prediction to skew towards some certain classes. Existing FSSL methods primarily tackle this issue by enhancing consistency in model parameters or outputs. However, as the models themselves are biased, merely constraining their consistency is not sufficient to alleviate prediction bias. In this paper, we explore this bias from a Bayesian perspective and demonstrate that it principally originates from label prior bias within the training data. Building upon this insight, we propose a debiasing method for FSSL named FedDB. FedDB utilizes the Average Prediction Probability of Unlabeled Data (APP-U) to approximate the biased prior.During local training, FedDB employs APP-U to refine pseudo-labeling through Bayes' theorem, thereby significantly reducing the label prior bias. Concurrently, during the model aggregation, FedDB uses APP-U from participating clients to formulate unbiased aggregate weights, thereby effectively diminishing bias in the global model. Experimental results show that FedDB can surpass existing FSSL methods. The code is available at https://github.com/GuogangZhu/FedDB.


Scalable Non-Cartesian Magnetic Resonance Imaging with R2D2

arXiv.org Artificial Intelligence

We propose a new approach for non-Cartesian magnetic resonance image reconstruction. While unrolled architectures provide robustness via data-consistency layers, embedding measurement operators in Deep Neural Network (DNN) can become impractical at large scale. Alternative Plug-and-Play (PnP) approaches, where the denoising DNNs are blind to the measurement setting, are not affected by this limitation and have also proven effective, but their highly iterative nature also affects scalability. To address this scalability challenge, we leverage the "Residual-to-Residual DNN series for high-Dynamic range imaging (R2D2)" approach recently introduced in astronomical imaging. R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of DNNs taking the previous iteration's image estimate and associated data residual as inputs. The method can be interpreted as a learned version of the Matching Pursuit algorithm. We demonstrate R2D2 in simulation, considering radial k-space sampling acquisition sequences. Our preliminary results suggest that R2D2 achieves: (i) suboptimal performance compared to its unrolled incarnation R2D2-Net, which is however non-scalable due to the necessary embedding of NUFFT-based data-consistency layers; (ii) superior reconstruction quality to a scalable version of R2D2-Net embedding an FFT-based approximation for data consistency; (iii) superior reconstruction quality to PnP, while only requiring few iterations.


FoundationGrasp: Generalizable Task-Oriented Grasping with Foundation Models

arXiv.org Artificial Intelligence

Task-oriented grasping (TOG), which refers to the problem of synthesizing grasps on an object that are configurationally compatible with the downstream manipulation task, is the first milestone towards tool manipulation. Analogous to the activation of two brain regions responsible for semantic and geometric reasoning during cognitive processes, modeling the complex relationship between objects, tasks, and grasps requires rich prior knowledge about objects and tasks. Existing methods typically limit the prior knowledge to a closed-set scope and cannot support the generalization to novel objects and tasks out of the training set. To address such a limitation, we propose FoundationGrasp, a foundation model-based TOG framework that leverages the open-ended knowledge from foundation models to learn generalizable TOG skills. Comprehensive experiments are conducted on the contributed Language and Vision Augmented TaskGrasp (LaViA-TaskGrasp) dataset, demonstrating the superiority of FoudationGrasp over existing methods when generalizing to novel object instances, object classes, and tasks out of the training set. Furthermore, the effectiveness of FoudationGrasp is validated in real-robot grasping and manipulation experiments on a 7 DoF robotic arm. Our code, data, appendix, and video are publicly available at https://sites.google.com/view/foundationgrasp.


Commonsense Scene Graph-based Target Localization for Object Search

arXiv.org Artificial Intelligence

Object search is a fundamental skill for household robots, yet the core problem lies in the robot's ability to locate the target object accurately. The dynamic nature of household environments, characterized by the arbitrary placement of daily objects by users, makes it challenging to perform target localization. To efficiently locate the target object, the robot needs to be equipped with knowledge at both the object and room level. However, existing approaches rely solely on one type of knowledge, leading to unsatisfactory object localization performance and, consequently, inefficient object search processes. To address this problem, we propose a commonsense scene graph-based target localization, CSG-TL, to enhance target object search in the household environment. Given the pre-built map with stationary items, the robot models the room-level knowledge with object-level commonsense knowledge generated by a large language model (LLM) to a commonsense scene graph (CSG), supporting both types of knowledge for CSG-TL. To demonstrate the superiority of CSG-TL on target localization, extensive experiments are performed on the real-world ScanNet dataset and the AI2THOR simulator. Moreover, we have extended CSG-TL to an object search framework, CSG-OS, validated in both simulated and real-world environments. Code and videos are available at https://sites.google.com/view/csg-os.


HKTGNN: Hierarchical Knowledge Transferable Graph Neural Network-based Supply Chain Risk Assessment

arXiv.org Artificial Intelligence

The strength of a supply chain is an important measure of a country's or region's technical advancement and overall competitiveness. Establishing supply chain risk assessment models for effective management and mitigation of potential risks has become increasingly crucial. As the number of businesses grows, the important relationships become more complicated and difficult to measure. This emphasizes the need of extracting relevant information from graph data. Previously, academics mostly employed knowledge inference to increase the visibility of links between nodes in the supply chain. However, they have not solved the data hunger problem of single node feature characteristics. We propose a hierarchical knowledge transferable graph neural network-based (HKTGNN) supply chain risk assessment model to address these issues. Our approach is based on current graph embedding methods for assessing corporate investment risk assessment. We embed the supply chain network corresponding to individual goods in the supply chain using the graph embedding module, resulting in a directed homogeneous graph with just product nodes. This reduces the complicated supply chain network into a basic product network. It addresses difficulties using the domain difference knowledge transferable module based on centrality, which is presented by the premise that supply chain feature characteristics may be biased in the actual world. Meanwhile, the feature complement and message passing will alleviate the data hunger problem, which is driven by domain differences. Our model outperforms in experiments on a real-world supply chain dataset. We will give an equation to prove that our comparative experiment is both effective and fair.