Taneja, Karan
MuDoC: An Interactive Multimodal Document-grounded Conversational AI System
Taneja, Karan, Goel, Ashok K.
Multimodal AI is an important step towards building effective tools to leverage multiple modalities in human-AI communication. Building a multimodal document-grounded AI system to interact with long documents remains a challenge. Our work aims to fill the research gap of directly leveraging grounded visuals from documents alongside textual content in documents for response generation. We present an interactive conversational AI agent 'MuDoC' based on GPT-4o to generate document-grounded responses with interleaved text and figures. MuDoC's intelligent textbook interface promotes trustworthiness and enables verification of system responses by allowing instant navigation to source text and figures in the documents. We also discuss qualitative observations based on MuDoC responses highlighting its strengths and limitations.
Jill Watson: A Virtual Teaching Assistant powered by ChatGPT
Taneja, Karan, Maiti, Pratyusha, Kakar, Sandeep, Guruprasad, Pranav, Rao, Sanjeev, Goel, Ashok K.
Conversational AI agents often require extensive datasets for training that are not publicly released, are limited to social chit-chat or handling a specific domain, and may not be easily extended to accommodate the latest advances in AI technologies. This paper introduces Jill Watson, a conversational Virtual Teaching Assistant (VTA) leveraging the capabilities of ChatGPT. Jill Watson based on ChatGPT requires no prior training and uses a modular design to allow the integration of new APIs using a skill-based architecture inspired by XiaoIce. Jill Watson is also well-suited for intelligent textbooks as it can process and converse using multiple large documents. We exclusively utilize publicly available resources for reproducibility and extensibility. Comparative analysis shows that our system outperforms the legacy knowledge-based Jill Watson as well as the OpenAI Assistants service. We employ many safety measures that reduce instances of hallucinations and toxicity. The paper also includes real-world examples from a classroom setting that demonstrate different features of Jill Watson and its effectiveness.
Monte Carlo Tree Search for Recipe Generation using GPT-2
Taneja, Karan, Segal, Richard, Goodwin, Richard
Automatic food recipe generation methods provide a creative tool for chefs to explore and to create new, and interesting culinary delights. Given the recent success of large language models (LLMs), they have the potential to create new recipes that can meet individual preferences, dietary constraints, and adapt to what is in your refrigerator. Existing research on using LLMs to generate recipes has shown that LLMs can be finetuned to generate realistic-sounding recipes. However, on close examination, these generated recipes often fail to meet basic requirements like including chicken as an ingredient in chicken dishes. In this paper, we propose RecipeMC, a text generation method using GPT-2 that relies on Monte Carlo Tree Search (MCTS). RecipeMC allows us to define reward functions to put soft constraints on text generation and thus improve the credibility of the generated recipes. Our results show that human evaluators prefer recipes generated with RecipeMC more often than recipes generated with other baseline methods when compared with real recipes.
Machine Teaching for Building Modular AI Agents based on Zero-shot Learners
Taneja, Karan, Goel, Ashok
The recent advances in large language models (LLMs) have led to the creation of many modular AI agents. These agents employ LLMs as zero-shot learners to perform sub-tasks in order to solve complex tasks set forth by human users. We propose an approach to enhance the robustness and performance of modular AI agents that utilize LLMs as zero-shot learners. Our iterative machine teaching method offers an efficient way to teach AI agents over time with limited human feedback, addressing the limit posed by the quality of zero-shot learning. We advocate leveraging the data traces from initial deployments and outputs or annotations from the zero-shot learners to train smaller and task-specific substitute models which can reduce both the monetary costs and environmental impact. Our machine teaching process avails human expertise to correct examples with a high likelihood of misannotations. Results on three tasks, common to conversational AI agents, show that close-to-oracle performance can be achieved with supervision on 20-70% of the dataset depending upon the complexity of the task and performance of zero-shot learners.
A Multi-Resolution Physics-Informed Recurrent Neural Network: Formulation and Application to Musculoskeletal Systems
Taneja, Karan, He, Xiaolong, He, Qizhi, Chen, J. S.
This work presents a multi-resolution physics-informed recurrent neural network (MR PI-RNN), for simultaneous prediction of musculoskeletal (MSK) motion and parameter identification of the MSK systems. The MSK application was selected as the model problem due to its challenging nature in mapping the high-frequency surface electromyography (sEMG) signals to the low-frequency body joint motion controlled by the MSK and muscle contraction dynamics. The proposed method utilizes the fast wavelet transform to decompose the mixed frequency input sEMG and output joint motion signals into nested multi-resolution signals. The prediction model is subsequently trained on coarser-scale input-output signals using a gated recurrent unit (GRU), and then the trained parameters are transferred to the next level of training with finer-scale signals. These training processes are repeated recursively under a transfer-learning fashion until the full-scale training (i.e., with unfiltered signals) is achieved, while satisfying the underlying dynamic equilibrium. Numerical examples on recorded subject data demonstrate the effectiveness of the proposed framework in generating a physics-informed forward-dynamics surrogate, which yields higher accuracy in motion predictions of elbow flexion-extension of an MSK system compared to the case with single-scale training. The framework is also capable of identifying muscle parameters that are physiologically consistent with the subject's kinematics data.