Goto

Collaborating Authors

 Tan, Chuanqi


Sharing, Teaching and Aligning: Knowledgeable Transfer Learning for Cross-Lingual Machine Reading Comprehension

arXiv.org Artificial Intelligence

In cross-lingual language understanding, machine translation is often utilized to enhance the transferability of models across languages, either by translating the training data from the source language to the target, or from the target to the source to aid inference. However, in cross-lingual machine reading comprehension (MRC), it is difficult to perform a deep level of assistance to enhance cross-lingual transfer because of the variation of answer span positions in different languages. In this paper, we propose X-STA, a new approach for cross-lingual MRC. Specifically, we leverage an attentive teacher to subtly transfer the answer spans of the source language to the answer output space of the target. A Gradient-Disentangled Knowledge Sharing technique is proposed as an improved cross-attention block. In addition, we force the model to learn semantic alignments from multiple granularities and calibrate the model outputs with teacher guidance to enhance cross-lingual transferability. Experiments on three multi-lingual MRC datasets show the effectiveness of our method, outperforming state-of-the-art approaches.


Query and Response Augmentation Cannot Help Out-of-domain Math Reasoning Generalization

arXiv.org Artificial Intelligence

In math reasoning with large language models (LLMs), fine-tuning data augmentation by query evolution and diverse reasoning paths is empirically verified effective, profoundly narrowing the gap between open-sourced LLMs and cutting-edge proprietary LLMs. In this paper, we conduct an investigation for such data augmentation in math reasoning and are intended to answer: (1) What strategies of data augmentation are more effective; (2) What is the scaling relationship between the amount of augmented data and model performance; and (3) Can data augmentation incentivize generalization to out-of-domain mathematical reasoning tasks? To this end, we create a new dataset, AugGSM8K, by complicating and diversifying the queries from GSM8K and sampling multiple reasoning paths. We obtained a series of LLMs called MuggleMath by fine-tuning on subsets of AugGSM8K. MuggleMath substantially achieves new state-of-the-art on GSM8K (from 54% to 68.4% at the scale of 7B, and from 63.9% to 74.0% at the scale of 13B). A log-linear relationship is presented between MuggleMath's performance and the amount of augmented data. We also find that MuggleMath is weak in out-of-domain math reasoning generalization to MATH. This is attributed to the differences in query distribution between AugGSM8K and MATH which suggest that augmentation on a single benchmark could not help with overall math reasoning performance. Codes and AugGSM8K will be uploaded to https://github.com/OFA-Sys/gsm8k-ScRel.


Knowledge Rumination for Pre-trained Language Models

arXiv.org Artificial Intelligence

Previous studies have revealed that vanilla pre-trained language models (PLMs) lack the capacity to handle knowledge-intensive NLP tasks alone; thus, several works have attempted to integrate external knowledge into PLMs. However, despite the promising outcome, we empirically observe that PLMs may have already encoded rich knowledge in their pre-trained parameters but fail to fully utilize them when applying them to knowledge-intensive tasks. In this paper, we propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize that related latent knowledge without retrieving it from the external corpus. By simply adding a prompt like "As far as I know" to the PLMs, we try to review related latent knowledge and inject them back into the model for knowledge consolidation. We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3. Experimental results on six commonsense reasoning tasks and GLUE benchmarks demonstrate the effectiveness of our proposed approach, which proves that the knowledge stored in PLMs can be better exploited to enhance performance. Code is available in https://github.com/zjunlp/knowledge-rumination.


RRHF: Rank Responses to Align Language Models with Human Feedback without tears

arXiv.org Artificial Intelligence

InstructGPT implements RLHF through several stages, including Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization (PPO). However, PPO is sensitive to hyperparameters and requires multiple models in its standard implementation, making it hard to train and scale up to larger parameter counts. In contrast, we propose a novel learning paradigm called RRHF, which scores sampled responses from different sources via a logarithm of conditional probabilities and learns to align these probabilities with human preferences through ranking loss. RRHF can leverage sampled responses from various sources including the model responses from itself, other large language model responses, and human expert responses to learn to rank them. RRHF only needs 1 to 2 models during tuning and can efficiently align language models with human preferences robustly without complex hyperparameter tuning. Additionally, RRHF can be considered an extension of SFT and reward model training while being simpler than PPO in terms of coding, model counts, and hyperparameters. We evaluate RRHF on the Helpful and Harmless dataset, demonstrating comparable alignment performance with PPO by reward model score and human labeling. Extensive experiments show that the performance of RRHF is highly related to sampling quality which suggests RRHF is a best-of-n learner.


Qwen Technical Report

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.


Boosting In-Context Learning with Factual Knowledge

arXiv.org Artificial Intelligence

In-Context Learning (ICL) over Large language models (LLMs) aims at solving previously unseen tasks by conditioning on a few training examples, eliminating the need for parameter updates and achieving competitive performance. In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets, i.e., the inherent knowledge learned in LLMs, the factual knowledge derived from the selected in-context examples, and the knowledge biases in LLMs for output generation. To unleash the power of LLMs in few-shot learning scenarios, we introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL: 1) injecting factual knowledge to LLMs during continual self-supervised pre-training, 2) judiciously selecting the examples with high knowledge relevance, and 3) calibrating the prediction results based on prior knowledge. We evaluate the proposed approaches on auto-regressive LLMs (e.g., GPT-style models) over multiple text classification and question answering tasks. Experimental results demonstrate that KICT substantially outperforms strong baselines, and improves by more than 13% and 7% of accuracy on text classification and question answering tasks, respectively.


Contrastive Demonstration Tuning for Pre-trained Language Models

arXiv.org Artificial Intelligence

Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged into any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in https://github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.


Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

arXiv.org Artificial Intelligence

Pre-trained language models have contributed significantly to relation extraction by demonstrating remarkable few-shot learning abilities. However, prompt tuning methods for relation extraction may still fail to generalize to those rare or hard patterns. Note that the previous parametric learning paradigm can be viewed as memorization regarding training data as a book and inference as the close-book test. Those long-tailed or hard patterns can hardly be memorized in parameters given few-shot instances. To this end, we regard RE as an open-book examination and propose a new semiparametric paradigm of retrieval-enhanced prompt tuning for relation extraction. We construct an open-book datastore for retrieval regarding prompt-based instance representations and corresponding relation labels as memorized key-value pairs. During inference, the model can infer relations by linearly interpolating the base output of PLM with the non-parametric nearest neighbor distribution over the datastore. In this way, our model not only infers relation through knowledge stored in the weights during training but also assists decision-making by unwinding and querying examples in the open-book datastore. Extensive experiments on benchmark datasets show that our method can achieve state-of-the-art in both standard supervised and few-shot settings. Code are available in https://github.com/zjunlp/PromptKG/tree/main/research/RetrievalRE.


Decoupling Knowledge from Memorization: Retrieval-augmented Prompt Learning

arXiv.org Artificial Intelligence

Prompt learning approaches have made waves in natural language processing by inducing better few-shot performance while they still follow a parametric-based learning paradigm; the oblivion and rote memorization problems in learning may encounter unstable generalization issues. Specifically, vanilla prompt learning may struggle to utilize atypical instances by rote during fully-supervised training or overfit shallow patterns with low-shot data. To alleviate such limitations, we develop RetroPrompt with the motivation of decoupling knowledge from memorization to help the model strike a balance between generalization and memorization. In contrast with vanilla prompt learning, RetroPrompt constructs an open-book knowledge-store from training instances and implements a retrieval mechanism during the process of input, training and inference, thus equipping the model with the ability to retrieve related contexts from the training corpus as cues for enhancement. Extensive experiments demonstrate that RetroPrompt can obtain better performance in both few-shot and zero-shot settings. Besides, we further illustrate that our proposed RetroPrompt can yield better generalization abilities with new datasets. Detailed analysis of memorization indeed reveals RetroPrompt can reduce the reliance of language models on memorization; thus, improving generalization for downstream tasks. Code is available in https://github.com/zjunlp/PromptKG/tree/main/research/RetroPrompt.


One Model for All Domains: Collaborative Domain-Prefix Tuning for Cross-Domain NER

arXiv.org Artificial Intelligence

Cross-domain NER is a challenging task to address the low-resource problem in practical scenarios. Previous typical solutions mainly obtain a NER model by pre-trained language models (PLMs) with data from a rich-resource domain and adapt it to the target domain. Owing to the mismatch issue among entity types in different domains, previous approaches normally tune all parameters of PLMs, ending up with an entirely new NER model for each domain. Moreover, current models only focus on leveraging knowledge in one general source domain while failing to successfully transfer knowledge from multiple sources to the target. To address these issues, we introduce Collaborative Domain-Prefix Tuning for cross-domain NER (CP-NER) based on text-to-text generative PLMs. Specifically, we present text-to-text generation grounding domain-related instructors to transfer knowledge to new domain NER tasks without structural modifications. We utilize frozen PLMs and conduct collaborative domain-prefix tuning to stimulate the potential of PLMs to handle NER tasks across various domains. Experimental results on the Cross-NER benchmark show that the proposed approach has flexible transfer ability and performs better on both one-source and multiple-source cross-domain NER tasks. Codes are available in https://github.com/zjunlp/DeepKE/tree/main/example/ner/cross.