Goto

Collaborating Authors

 Tan, Chenhao


Can Domain Experts Rely on AI Appropriately? A Case Study on AI-Assisted Prostate Cancer MRI Diagnosis

arXiv.org Artificial Intelligence

Despite the growing interest in human-AI decision making, experimental studies with domain experts remain rare, largely due to the complexity of working with domain experts and the challenges in setting up realistic experiments. In this work, we conduct an in-depth collaboration with radiologists in prostate cancer diagnosis based on MRI images. Building on existing tools for teaching prostate cancer diagnosis, we develop an interface and conduct two experiments to study how AI assistance and performance feedback shape the decision making of domain experts. In Study 1, clinicians were asked to provide an initial diagnosis (human), then view the AI's prediction, and subsequently finalize their decision (human-AI team). In Study 2 (after a memory wash-out period), the same participants first received aggregated performance statistics from Study 1, specifically their own performance, the AI's performance, and their human-AI team performance, and then directly viewed the AI's prediction before making their diagnosis (i.e., no independent initial diagnosis). These two workflows represent realistic ways that clinical AI tools might be used in practice, where the second study simulates a scenario where doctors can adjust their reliance and trust on AI based on prior performance feedback. Our findings show that, while human-AI teams consistently outperform humans alone, they still underperform the AI due to under-reliance, similar to prior studies with crowdworkers. Providing clinicians with performance feedback did not significantly improve the performance of human-AI teams, although showing AI decisions in advance nudges people to follow AI more. Meanwhile, we observe that the ensemble of human-AI teams can outperform AI alone, suggesting promising directions for human-AI collaboration.


Literature Meets Data: A Synergistic Approach to Hypothesis Generation

arXiv.org Artificial Intelligence

AI holds promise for transforming scientific processes, including hypothesis generation. Prior work on hypothesis generation can be broadly categorized into theory-driven and data-driven approaches. While both have proven effective in generating novel and plausible hypotheses, it remains an open question whether they can complement each other. To address this, we develop the first method that combines literature-based insights with data to perform LLM-powered hypothesis generation. We apply our method on five different datasets and demonstrate that integrating literature and data outperforms other baselines (8.97\% over few-shot, 15.75\% over literature-based alone, and 3.37\% over data-driven alone). Additionally, we conduct the first human evaluation to assess the utility of LLM-generated hypotheses in assisting human decision-making on two challenging tasks: deception detection and AI generated content detection. Our results show that human accuracy improves significantly by 7.44\% and 14.19\% on these tasks, respectively. These findings suggest that integrating literature-based and data-driven approaches provides a comprehensive and nuanced framework for hypothesis generation and could open new avenues for scientific inquiry.


CaseSumm: A Large-Scale Dataset for Long-Context Summarization from U.S. Supreme Court Opinions

arXiv.org Artificial Intelligence

This paper introduces CaseSumm, a novel dataset for long-context summarization in the legal domain that addresses the need for longer and more complex datasets for summarization evaluation. We collect 25.6K U.S. Supreme Court (SCOTUS) opinions and their official summaries, known as "syllabuses." Our dataset is the largest open legal case summarization dataset, and is the first to include summaries of SCOTUS decisions dating back to 1815. We also present a comprehensive evaluation of LLM-generated summaries using both automatic metrics and expert human evaluation, revealing discrepancies between these assessment methods. Our evaluation shows Mistral 7b, a smaller open-source model, outperforms larger models on most automatic metrics and successfully generates syllabus-like summaries. In contrast, human expert annotators indicate that Mistral summaries contain hallucinations. The annotators consistently rank GPT-4 summaries as clearer and exhibiting greater sensitivity and specificity. Further, we find that LLM-based evaluations are not more correlated with human evaluations than traditional automatic metrics. Furthermore, our analysis identifies specific hallucinations in generated summaries, including precedent citation errors and misrepresentations of case facts. These findings demonstrate the limitations of current automatic evaluation methods for legal summarization and highlight the critical role of human evaluation in assessing summary quality, particularly in complex, high-stakes domains. CaseSumm is available at https://huggingface.co/datasets/ChicagoHAI/CaseSumm


Causal Micro-Narratives

arXiv.org Artificial Intelligence

We present a novel approach to classify causal micro-narratives from text. These narratives are sentence-level explanations of the cause(s) and/or effect(s) of a target subject. The approach requires only a subject-specific ontology of causes and effects, and we demonstrate it with an application to inflation narratives. Using a human-annotated dataset spanning historical and contemporary US news articles for training, we evaluate several large language models (LLMs) on this multi-label classification task. The best-performing model--a fine-tuned Llama 3.1 8B--achieves F1 scores of 0.87 on narrative detection and 0.71 on narrative classification. Comprehensive error analysis reveals challenges arising from linguistic ambiguity and highlights how model errors often mirror human annotator disagreements. This research establishes a framework for extracting causal micro-narratives from real-world data, with wide-ranging applications to social science research.


GPT-4V Cannot Generate Radiology Reports Yet

arXiv.org Artificial Intelligence

GPT-4V's purported strong multimodal abilities raise interests in using it to automate radiology report writing, but there lacks thorough evaluations. In this work, we perform a systematic evaluation of GPT-4V in generating radiology reports on two chest X-ray report datasets: MIMIC-CXR and IU X-Ray. We attempt to directly generate reports using GPT-4V through different prompting strategies and find that it fails terribly in both lexical metrics and clinical efficacy metrics. To understand the low performance, we decompose the task into two steps: 1) the medical image reasoning step of predicting medical condition labels from images; and 2) the report synthesis step of generating reports from (groundtruth) conditions. We show that GPT-4V's performance in image reasoning is consistently low across different prompts. In fact, the distributions of model-predicted labels remain constant regardless of which groundtruth conditions are present on the image, suggesting that the model is not interpreting chest X-rays meaningfully. Even when given groundtruth conditions in report synthesis, its generated reports are less correct and less natural-sounding than a finetuned LLaMA-2. Altogether, our findings cast doubt on the viability of using GPT-4V in a radiology workflow.


Towards a Client-Centered Assessment of LLM Therapists by Client Simulation

arXiv.org Artificial Intelligence

Although there is a growing belief that LLMs can be used as therapists, exploring LLMs' capabilities and inefficacy, particularly from the client's perspective, is limited. This work focuses on a client-centered assessment of LLM therapists with the involvement of simulated clients, a standard approach in clinical medical education. However, there are two challenges when applying the approach to assess LLM therapists at scale. Ethically, asking humans to frequently mimic clients and exposing them to potentially harmful LLM outputs can be risky and unsafe. Technically, it can be difficult to consistently compare the performances of different LLM therapists interacting with the same client. To this end, we adopt LLMs to simulate clients and propose ClientCAST, a client-centered approach to assessing LLM therapists by client simulation. Specifically, the simulated client is utilized to interact with LLM therapists and complete questionnaires related to the interaction. Based on the questionnaire results, we assess LLM therapists from three client-centered aspects: session outcome, therapeutic alliance, and self-reported feelings. We conduct experiments to examine the reliability of ClientCAST and use it to evaluate LLMs therapists implemented by Claude-3, GPT-3.5, LLaMA3-70B, and Mixtral 8*7B. Codes are released at https://github.com/wangjs9/ClientCAST.


The Impossibility of Fair LLMs

arXiv.org Machine Learning

The need for fair AI is increasingly clear in the era of general-purpose systems such as ChatGPT, Gemini, and other large language models (LLMs). However, the increasing complexity of human-AI interaction and its social impacts have raised questions of how fairness standards could be applied. Here, we review the technical frameworks that machine learning researchers have used to evaluate fairness, such as group fairness and fair representations, and find that their application to LLMs faces inherent limitations. We show that each framework either does not logically extend to LLMs or presents a notion of fairness that is intractable for LLMs, primarily due to the multitudes of populations affected, sensitive attributes, and use cases. To address these challenges, we develop guidelines for the more realistic goal of achieving fairness in particular use cases: the criticality of context, the responsibility of LLM developers, and the need for stakeholder participation in an iterative process of design and evaluation. Moreover, it may eventually be possible and even necessary to use the general-purpose capabilities of AI systems to address fairness challenges as a form of scalable AI-assisted alignment.


Characterizing Multimodal Long-form Summarization: A Case Study on Financial Reports

arXiv.org Artificial Intelligence

As large language models (LLMs) expand the power of natural language processing to handle long inputs, rigorous and systematic analyses are necessary to understand their abilities and behavior. A salient application is summarization, due to its ubiquity and controversy (e.g., researchers have declared the death of summarization). In this paper, we use financial report summarization as a case study because financial reports not only are long but also use numbers and tables extensively. We propose a computational framework for characterizing multimodal long-form summarization and investigate the behavior of Claude 2.0/2.1, GPT-4/3.5, and Command. We find that GPT-3.5 and Command fail to perform this summarization task meaningfully. For Claude 2 and GPT-4, we analyze the extractiveness of the summary and identify a position bias in LLMs. This position bias disappears after shuffling the input for Claude, which suggests that Claude has the ability to recognize important information. We also conduct a comprehensive investigation on the use of numeric data in LLM-generated summaries and offer a taxonomy of numeric hallucination. We employ prompt engineering to improve GPT-4's use of numbers with limited success. Overall, our analyses highlight the strong capability of Claude 2 in handling long multimodal inputs compared to GPT-4.


Hypothesis Generation with Large Language Models

arXiv.org Artificial Intelligence

Effective generation of novel hypotheses is instrumental to scientific progress. So far, researchers have been the main powerhouse behind hypothesis generation by painstaking data analysis and thinking (also known as the Eureka moment). In this paper, we examine the potential of large language models (LLMs) to generate hypotheses. We focus on hypothesis generation based on data (i.e., labeled examples). To enable LLMs to handle arbitrarily long contexts, we generate initial hypotheses from a small number of examples and then update them iteratively to improve the quality of hypotheses. Inspired by multi-armed bandits, we design a reward function to inform the exploitation-exploration tradeoff in the update process. Our algorithm is able to generate hypotheses that enable much better predictive performance than few-shot prompting in classification tasks, improving accuracy by 31.7% on a synthetic dataset and by 13.9%, 3.3% and, 24.9% on three real-world datasets. We also outperform supervised learning by 12.8% and 11.2% on two challenging real-world datasets. Furthermore, we find that the generated hypotheses not only corroborate human-verified theories but also uncover new insights for the tasks.


OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning

arXiv.org Artificial Intelligence

Recently, there has been a surge of explainable AI (XAI) methods driven by the need for understanding machine learning model behaviors in high-stakes scenarios. However, properly evaluating the effectiveness of the XAI methods inevitably requires the involvement of human subjects, and conducting human-centered benchmarks is challenging in a number of ways: designing and implementing user studies is complex; numerous design choices in the design space of user study lead to problems of reproducibility; and running user studies can be challenging and even daunting for machine learning researchers. To address these challenges, this paper presents OpenHEXAI, an open-source framework for human-centered evaluation of XAI methods. OpenHEXAI features (1) a collection of diverse benchmark datasets, pre-trained models, and post hoc explanation methods; (2) an easy-to-use web application for user study; (3) comprehensive evaluation metrics for the effectiveness of post hoc explanation methods in the context of human-AI decision making tasks; (4) best practice recommendations of experiment documentation; and (5) convenient tools for power analysis and cost estimation. OpenHEAXI is the first large-scale infrastructural effort to facilitate human-centered benchmarks of XAI methods. It simplifies the design and implementation of user studies for XAI methods, thus allowing researchers and practitioners to focus on the scientific questions. Additionally, it enhances reproducibility through standardized designs. Based on OpenHEXAI, we further conduct a systematic benchmark of four state-of-the-art post hoc explanation methods and compare their impacts on human-AI decision making tasks in terms of accuracy, fairness, as well as users' trust and understanding of the machine learning model.