Tamari, Ronen
"What's my model inside of?": Exploring the role of environments for grounded natural language understanding
Tamari, Ronen
In contrast to classical cognitive science which studied brains in isolation, ecological approaches focused on the role of the body and environment in shaping cognition. Similarly, in this thesis we adopt an ecological approach to grounded natural language understanding (NLU) research. Grounded language understanding studies language understanding systems situated in the context of events, actions and precepts in naturalistic/simulated virtual environments. Where classic research tends to focus on designing new models and optimization methods while treating environments as given, we explore the potential of environment design for improving data collection and model development. We developed novel training and annotation approaches for procedural text understanding based on text-based game environments. We also drew upon embodied cognitive linguistics literature to propose a roadmap for grounded NLP research, and to inform the development of a new benchmark for measuring the progress of large language models on challenging commonsense reasoning tasks. We leveraged the richer supervision provided by text-based game environments to develop Breakpoint Transformers, a novel approach to modeling intermediate semantic information in long narrative or procedural texts. Finally, we integrated theories on the role of environments in collective human intelligence to propose a design for AI-augmented "social thinking environments" for knowledge workers like scientists.
Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs
Richardson, Kyle, Tamari, Ronen, Sultan, Oren, Tsarfaty, Reut, Shahaf, Dafna, Sabharwal, Ashish
Can we teach natural language understanding models to track their beliefs through intermediate points in text? We propose a representation learning framework called breakpoint modeling that allows for learning of this type. Given any text encoder and data marked with intermediate states (breakpoints) along with corresponding textual queries viewed as true/false propositions (i.e., the candidate beliefs of a model, consisting of information changing through time) our approach trains models in an efficient and end-to-end fashion to build intermediate representations that facilitate teaching and direct querying of beliefs at arbitrary points alongside solving other end tasks. To show the benefit of our approach, we experiment with a diverse set of NLU tasks including relational reasoning on CLUTRR and narrative understanding on bAbI. Using novel belief prediction tasks for both tasks, we show the benefit of our main breakpoint transformer, based on T5, over conventional representation learning approaches in terms of processing efficiency, prediction accuracy and prediction consistency, all with minimal to no effect on corresponding QA end tasks. To show the feasibility of incorporating our belief tracker into more complex reasoning pipelines, we also obtain SOTA performance on the three-tiered reasoning challenge for the TRIP benchmark (around 23-32% absolute improvement on Tasks 2-3).
Dyna-bAbI: unlocking bAbI's potential with dynamic synthetic benchmarking
Tamari, Ronen, Richardson, Kyle, Sar-Shalom, Aviad, Kahlon, Noam, Liu, Nelson, Tsarfaty, Reut, Shahaf, Dafna
While neural language models often perform surprisingly well on natural language understanding (NLU) tasks, their strengths and limitations remain poorly understood. Controlled synthetic tasks are thus an increasingly important resource for diagnosing model behavior. In this work we focus on story understanding, a core competency for NLU systems. However, the main synthetic resource for story understanding, the bAbI benchmark, lacks such a systematic mechanism for controllable task generation. We develop Dyna-bAbI, a dynamic framework providing fine-grained control over task generation in bAbI. We demonstrate our ideas by constructing three new tasks requiring compositional generalization, an important evaluation setting absent from the original benchmark. We tested both special-purpose models developed for bAbI as well as state-of-the-art pre-trained methods, and found that while both approaches solve the original tasks (>99% accuracy), neither approach succeeded in the compositional generalization setting, indicating the limitations of the original training data. We explored ways to augment the original data, and found that though diversifying training data was far more useful than simply increasing dataset size, it was still insufficient for driving robust compositional generalization (with <70% accuracy for complex compositions). Our results underscore the importance of highly controllable task generators for creating robust NLU systems through a virtuous cycle of model and data development.
Scaling Creative Inspiration with Fine-Grained Functional Facets of Product Ideas
Hope, Tom, Tamari, Ronen, Kang, Hyeonsu, Hershcovich, Daniel, Chan, Joel, Kittur, Aniket, Shahaf, Dafna
Web-scale repositories of products, patents and scientific papers offer an opportunity for creating automated systems that scour millions of ideas and assist users in discovering inspirations and solutions. Yet the common representation of ideas is in the form of raw textual descriptions, lacking important structure that is required for supporting creative innovation. Prior work has pointed to the importance of functional structure -- capturing the mechanisms and purposes of inventions -- for allowing users to discover structural connections across ideas and creatively adapt existing technologies. However, the use of functional representations was either coarse and limited in expressivity, or dependent on curated knowledge bases with poor coverage and significant manual effort from users. To help bridge this gap and unlock the potential of large-scale idea mining, we propose a novel computational representation that automatically breaks up products into fine-grained functional facets. We train a model to extract these facets from a challenging real-world corpus of invention descriptions, and represent each product as a set of facet embeddings. We design similarity metrics that support granular matching between functional facets across ideas, and use them to build a novel functional search capability that enables expressive queries for mechanisms and purposes. We construct a graph capturing hierarchical relations between purposes and mechanisms across an entire corpus of products, and use the graph to help problem-solvers explore the design space around a focal problem and view related problem perspectives. In empirical user studies, our approach leads to a significant boost in search accuracy and in the quality of creative inspirations, outperforming strong baselines and state-of-art representations of product texts by 50-60%.
Playing by the Book: Towards Agent-based Narrative Understanding through Role-playing and Simulation
Tamari, Ronen, Shindo, Hiroyuki, Shahaf, Dafna, Matsumoto, Yuji
Understanding procedural text requires tracking entities, actions and effects as the narrative unfolds (often implicitly). We focus on the challenging real-world problem of structured narrative extraction in the materials science domain, where language is highly specialized and suitable annotated data is not publicly available. We propose an approach, Text2Quest, where procedural text is interpreted as instructions for an interactive game. A reinforcement-learning agent completes the game by understanding and executing the procedure correctly, in a text-based simulated lab environment. The framework is intended to be more broadly applicable to other domain-specific and data-scarce settings. We conclude with a discussion of challenges and interesting potential extensions enabled by the agent-based perspective.
Tensorial Mixture Models
Sharir, Or, Tamari, Ronen, Cohen, Nadav, Shashua, Amnon
Casting neural networks in generative frameworks is a highly sought-after endeavor these days. Contemporary methods, such as Generative Adversarial Networks, capture some of the generative capabilities, but not all. In particular, they lack the ability of tractable marginalization, and thus are not suitable for many tasks. Other methods, based on arithmetic circuits and sum-product networks, do allow tractable marginalization, but their performance is challenged by the need to learn the structure of a circuit. Building on the tractability of arithmetic circuits, we leverage concepts from tensor analysis, and derive a family of generative models we call Tensorial Mixture Models (TMMs). TMMs assume a simple convolutional network structure, and in addition, lend themselves to theoretical analyses that allow comprehensive understanding of the relation between their structure and their expressive properties. We thus obtain a generative model that is tractable on one hand, and on the other hand, allows effective representation of rich distributions in an easily controlled manner. These two capabilities are brought together in the task of classification under missing data, where TMMs deliver state of the art accuracies with seamless implementation and design.