Goto

Collaborating Authors

 Talamadupula, Kartik


"Yeah Right!" -- Do LLMs Exhibit Multimodal Feature Transfer?

arXiv.org Artificial Intelligence

Human communication is a multifaceted and multimodal skill. Communication requires an understanding of both the surface-level textual content and the connotative intent of a piece of communication. In humans, learning to go beyond the surface level starts by learning communicative intent in speech. Once humans acquire these skills in spoken communication, they transfer those skills to written communication. In this paper, we assess the ability of speech+text models and text models trained with special emphasis on human-to-human conversations to make this multimodal transfer of skill. We specifically test these models on their ability to detect covert deceptive communication. We find that with no special prompting speech+text LLMs have an advantage over unimodal LLMs in performing this task. Likewise, we find that human-to-human conversation-trained LLMs are also advantaged in this skill.


EXPLORER: Exploration-guided Reasoning for Textual Reinforcement Learning

arXiv.org Artificial Intelligence

Text-based games (TBGs) have emerged as an important collection of NLP tasks, requiring reinforcement learning (RL) agents to combine natural language understanding with reasoning. A key challenge for agents attempting to solve such tasks is to generalize across multiple games and demonstrate good performance on both seen and unseen objects. Purely deep-RL-based approaches may perform well on seen objects; however, they fail to showcase the same performance on unseen objects. Commonsense-infused deep-RL agents may work better on unseen data; unfortunately, their policies are often not interpretable or easily transferable. To tackle these issues, in this paper, we present EXPLORER which is an exploration-guided reasoning agent for textual reinforcement learning. EXPLORER is neurosymbolic in nature, as it relies on a neural module for exploration and a symbolic module for exploitation. It can also learn generalized symbolic policies and perform well over unseen data. Our experiments show that EXPLORER outperforms the baseline agents on Text-World cooking (TW-Cooking) and Text-World Commonsense (TWC) games.


Are Human Conversations Special? A Large Language Model Perspective

arXiv.org Artificial Intelligence

This study analyzes changes in the attention mechanisms of large language models (LLMs) when used to understand natural conversations between humans (human-human). We analyze three use cases of LLMs: interactions over web content, code, and mathematical texts. By analyzing attention distance, dispersion, and interdependency across these domains, we highlight the unique challenges posed by conversational data. Notably, conversations require nuanced handling of long-term contextual relationships and exhibit higher complexity through their attention patterns. Our findings reveal that while language models exhibit domain-specific attention behaviors, there is a significant gap in their ability to specialize in human conversations. Through detailed attention entropy analysis and t-SNE visualizations, we demonstrate the need for models trained with a diverse array of high-quality conversational data to enhance understanding and generation of human-like dialogue. This research highlights the importance of domain specialization in language models and suggests pathways for future advancement in modeling human conversational nuances.


Knowledge-augmented Deep Learning and Its Applications: A Survey

arXiv.org Artificial Intelligence

Deep learning models, though having achieved great success in many different fields over the past years, are usually data hungry, fail to perform well on unseen samples, and lack of interpretability. Various prior knowledge often exists in the target domain and their use can alleviate the deficiencies with deep learning. To better mimic the behavior of human brains, different advanced methods have been proposed to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning, which we refer to as knowledge-augmented deep learning (KADL). In this survey, we define the concept of KADL, and introduce its three major tasks, i.e., knowledge identification, knowledge representation, and knowledge integration. Different from existing surveys that are focused on a specific type of knowledge, we provide a broad and complete taxonomy of domain knowledge and its representations. Based on our taxonomy, we provide a systematic review of existing techniques, different from existing works that survey integration approaches agnostic to taxonomy of knowledge. This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning. The thorough and critical reviews of numerous papers help not only understand current progresses but also identify future directions for the research on knowledge-augmented deep learning.


Investigating Explainability of Generative AI for Code through Scenario-based Design

arXiv.org Artificial Intelligence

What does it mean for a generative AI model to be explainable? The emergent discipline of explainable AI (XAI) has made great strides in helping people understand discriminative models. Less attention has been paid to generative models that produce artifacts, rather than decisions, as output. Meanwhile, generative AI (GenAI) technologies are maturing and being applied to application domains such as software engineering. Using scenario-based design and question-driven XAI design approaches, we explore users' explainability needs for GenAI in three software engineering use cases: natural language to code, code translation, and code auto-completion. We conducted 9 workshops with 43 software engineers in which real examples from state-of-the-art generative AI models were used to elicit users' explainability needs. Drawing from prior work, we also propose 4 types of XAI features for GenAI for code and gathered additional design ideas from participants. Our work explores explainability needs for GenAI for code and demonstrates how human-centered approaches can drive the technical development of XAI in novel domains.


When Is It Acceptable to Break the Rules? Knowledge Representation of Moral Judgement Based on Empirical Data

arXiv.org Artificial Intelligence

One of the most remarkable things about the human moral mind is its flexibility. We can make moral judgments about cases we have never seen before. We can decide that pre-established rules should be broken. We can invent novel rules on the fly. Capturing this flexibility is one of the central challenges in developing AI systems that can interpret and produce human-like moral judgment. This paper details the results of a study of real-world decision makers who judge whether it is acceptable to break a well-established norm: ``no cutting in line.'' We gather data on how human participants judge the acceptability of line-cutting in a range of scenarios. Then, in order to effectively embed these reasoning capabilities into a machine, we propose a method for modeling them using a preference-based structure, which captures a novel modification to standard ``dual process'' theories of moral judgment.


Text-based RL Agents with Commonsense Knowledge: New Challenges, Environments and Baselines

arXiv.org Artificial Intelligence

Text-based games have emerged as an important test-bed for Reinforcement Learning (RL) research, requiring RL agents to combine grounded language understanding with sequential decision making. In this paper, we examine the problem of infusing RL agents with commonsense knowledge. Such knowledge would allow agents to efficiently act in the world by pruning out implausible actions, and to perform look-ahead planning to determine how current actions might affect future world states. We design a new text-based gaming environment called TextWorld Commonsense (TWC) for training and evaluating RL agents with a specific kind of commonsense knowledge about objects, their attributes, and affordances. We also introduce several baseline RL agents which track the sequential context and dynamically retrieve the relevant commonsense knowledge from ConceptNet. We show that agents which incorporate commonsense knowledge in TWC perform better, while acting more efficiently. We conduct user-studies to estimate human performance on TWC and show that there is ample room for future improvement.


Reading Comprehension as Natural Language Inference: A Semantic Analysis

arXiv.org Artificial Intelligence

In the recent past, Natural language Inference (NLI) has gained significant attention, particularly given its promise for downstream NLP tasks. However, its true impact is limited and has not been well studied. Therefore, in this paper, we explore the utility of NLI for one of the most prominent downstream tasks, viz. Question Answering (QA). We transform the one of the largest available MRC dataset (RACE) to an NLI form, and compare the performances of a state-of-the-art model (RoBERTa) on both these forms. We propose new characterizations of questions, and evaluate the performance of QA and NLI models on these categories. We highlight clear categories for which the model is able to perform better when the data is presented in a coherent entailment form, and a structured question-answer concatenation form, respectively.


Bootstrapped Q-learning with Context Relevant Observation Pruning to Generalize in Text-based Games

arXiv.org Machine Learning

We show that Reinforcement Learning (RL) methods for solving Text-Based Games (TBGs) often fail to generalize on unseen games, especially in small data regimes. To address this issue, we propose Context Relevant Episodic State Truncation (CREST) for irrelevant token removal in observation text for improved generalization. Our method first trains a base model using Q-learning, which typically overfits the training games. The base model's action token distribution is used to perform observation pruning that removes irrelevant tokens. A second bootstrapped model is then retrained on the pruned observation text. Our bootstrapped agent shows improved generalization in solving unseen TextWorld games, using 10x-20x fewer training games compared to previous state-of-the-art methods despite requiring less number of training episodes.


Looking Beyond Sentence-Level Natural Language Inference for Downstream Tasks

arXiv.org Artificial Intelligence

In recent years, the Natural Language Inference (NLI) task has garnered significant attention, with new datasets and models achieving near human-level performance on it. However, the full promise of NLI -- particularly that it learns knowledge that should be generalizable to other downstream NLP tasks -- has not been realized. In this paper, we study this unfulfilled promise from the lens of two downstream tasks: question answering (QA), and text summarization. We conjecture that a key difference between the NLI datasets and these downstream tasks concerns the length of the premise; and that creating new long premise NLI datasets out of existing QA datasets is a promising avenue for training a truly generalizable NLI model. We validate our conjecture by showing competitive results on the task of QA and obtaining the best reported results on the task of Checking Factual Correctness of Summaries.