Goto

Collaborating Authors

 Taeihagh, Araz


Reliability Testing for Natural Language Processing Systems

arXiv.org Artificial Intelligence

Questions of fairness, robustness, and transparency are paramount to address before deploying NLP systems. Central to these concerns is the question of reliability: Can NLP systems reliably treat different demographics fairly and function correctly in diverse and noisy environments? To address this, we argue for the need for reliability testing and contextualize it among existing work on improving accountability. We show how adversarial attacks can be reframed for this goal, via a framework for developing reliability tests. We argue that Figure 1: How DOCTOR can integrate with existing reliability testing -- with an emphasis on interdisciplinary system development workflows. Test (left) and system collaboration -- will enable rigorous development (right) take place in parallel, separate and targeted testing, and aid in the enactment teams. Reliability tests can thus be constructed independent and enforcement of industry standards. of the system development team, either by an internal "red team" or by independent auditors.


Regulating human control over autonomous systems

arXiv.org Artificial Intelligence

In recent years, many sectors have experienced significant progress in automation, associated with the growing advances in artificial intelligence and machine learning. There are already automated robotic weapons, which are able to evaluate and engage with targets on their own, and there are already autonomous vehicles that do not need a human driver. It is argued that the use of increasingly autonomous systems (AS) should be guided by the policy of human control, according to which humans should execute a certain significant level of judgment over AS. While in the military sector there is a fear that AS could mean that humans lose control over life and death decisions, in the transportation domain, on the contrary, there is a strongly held view that autonomy could bring significant operational benefits by removing the need for a human driver. This article explores the notion of human control in the United States in the two domains of defense and transportation. The operationalization of emerging policies of human control results in the typology of direct and indirect human controls exercised over the use of AS. The typology helps to steer the debate away from the linguistic complexities of the term "autonomy." It identifies instead where human factors are undergoing important changes and ultimately informs about more detailed rules and standards formulation, which differ across domains, applications, and sectors.


Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks

arXiv.org Artificial Intelligence

The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.