Goto

Collaborating Authors

 Tabesh, Soroush


ASIDE: Architectural Separation of Instructions and Data in Language Models

arXiv.org Artificial Intelligence

Despite their remarkable performance, large language models lack elementary safety features, and this makes them susceptible to numerous malicious attacks. In particular, previous work has identified the absence of an intrinsic separation between instructions and data as a root cause for the success of prompt injection attacks. In this work, we propose an architectural change, ASIDE, that allows the model to clearly separate between instructions and data by using separate embeddings for them. Instead of training the embeddings from scratch, we propose a method to convert an existing model to ASIDE form by using two copies of the original model's embeddings layer, and applying an orthogonal rotation to one of them. We demonstrate the effectiveness of our method by showing (1) highly increased instruction-data separation scores without a loss in model capabilities and (2) competitive results on prompt injection benchmarks, even without dedicated safety training. Additionally, we study the working mechanism behind our method through an analysis of model representations. Large language models (LLMs) are commonly associated with interactive open-ended chat applications, such as ChatGPT. However, in many practical applications LLMs are integrated as a component into larger software systems. Their rich natural language understanding abilities allow them to be used for text analysis and generation, translation, document summarization, or information retrieval (Zhao et al., 2023). In all of these scenarios, the system is given instructions, for example as a system prompt, and data, for example, a user input or an uploaded document. These two forms of input play different roles: the instruction should be executed, determining the behavior of the model. The data should be processed, i.e., transformed to become the output of the system.


QuEST: Stable Training of LLMs with 1-Bit Weights and Activations

arXiv.org Artificial Intelligence

One approach to reducing the massive costs of large language models (LLMs) is the use of quantized or sparse representations for training or deployment. While post-training compression methods are very popular, the question of obtaining even more accurate compressed models by directly training over such representations, i.e., Quantization-Aware Training (QAT), is still open: for example, a recent study (arXiv:2411.04330v2) put the "optimal" bit-width at which models can be trained using QAT, while staying accuracy-competitive with standard FP16/BF16 precision, at 8-bits weights and activations. We advance this state-of-the-art via a new method called QuEST, which is Pareto-competitive with FP16, i.e., it provides better accuracy at lower model size, while training models with weights and activations in 4-bits or less. Moreover, QuEST allows stable training with 1-bit weights and activations. QuEST achieves this by improving two key aspects of QAT methods: (1) accurate and fast quantization of the (continuous) distributions of weights and activations via Hadamard normalization and MSE-optimal fitting; (2) a new trust gradient estimator based on the idea of explicitly minimizing the error between the noisy gradient computed over quantized states and the "true" (but unknown) full-precision gradient. Experiments on Llama-type architectures show that QuEST induces stable scaling laws across the entire range of hardware-supported precisions, and can be extended to sparse representations. We provide GPU kernel support showing that models produced by QuEST can be executed efficiently. Our code is available at https://github.com/IST-DASLab/QuEST.


HALO: Hadamard-Assisted Lossless Optimization for Efficient Low-Precision LLM Training and Fine-Tuning

arXiv.org Artificial Intelligence

Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which often already have large weight and activation outlier values that render quantized optimization difficult. We present HALO, a novel quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, to mitigate outliers during the low-precision computation, 2) FSDP integration for low-precision communication, and 3) high-performance kernel support. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.31x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. Our method supports both standard and parameter-efficient fine-tuning (PEFT) methods, both backed by efficient kernel implementations. Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in FP8 precision, while delivering performance benefits.


Can LLMs Separate Instructions From Data? And What Do We Even Mean By That?

arXiv.org Artificial Intelligence

Instruction-tuned Large Language Models (LLMs) show impressive results in numerous practical applications, but they lack essential safety features that are common in other areas of computer science, particularly an explicit separation of instructions and data. This makes them vulnerable to manipulations such as indirect prompt injections and generally unsuitable for safety-critical tasks. Surprisingly, there is currently no established definition or benchmark to quantify this phenomenon. In this work, we close this gap by introducing a formal measure for instruction-data separation and an empirical variant that is calculable from a model's outputs. We also present a new dataset, SEP, that allows estimating the measure for real-world models. Our results on various LLMs show that the problem of instruction-data separation is real: all models fail to achieve high separation, and canonical mitigation techniques, such as prompt engineering and fine-tuning, either fail to substantially improve separation or reduce model utility.


RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation

arXiv.org Artificial Intelligence

We investigate parameter-efficient fine-tuning (PEFT) methods that can provide good accuracy under limited computational and memory budgets in the context of large language models (LLMs). We present a new PEFT method called Robust Adaptation (RoSA) inspired by robust principal component analysis that jointly trains $\textit{low-rank}$ and $\textit{highly-sparse}$ components on top of a set of fixed pretrained weights to efficiently approximate the performance of a full-fine-tuning (FFT) solution. Across a series of challenging generative tasks such as grade-school math and SQL query generation, which require fine-tuning for good performance, we show that RoSA outperforms LoRA, pure sparse fine-tuning, and alternative hybrid methods at the same parameter budget, and can even recover the performance of FFT on some tasks. We provide system support for RoSA to complement the training algorithm, specifically in the form of sparse GPU kernels which enable memory- and computationally-efficient training, and show that it is also compatible with low-precision base weights, resulting in the first joint representation combining quantization, low-rank and sparse approximations. Our code is accessible at https://github.com/IST-DASLab/RoSA.