Not enough data to create a plot.
Try a different view from the menu above.
Swaroop, Siddharth
Rethinking LLM Bias Probing Using Lessons from the Social Sciences
Morehouse, Kirsten N., Swaroop, Siddharth, Pan, Weiwei
The proliferation of LLM bias probes introduces three significant challenges: (1) we lack principled criteria for choosing appropriate probes, (2) we lack a system for reconciling conflicting results across probes, and (3) we lack formal frameworks for reasoning about when (and why) probe results will generalize to real user behavior. We address these challenges by systematizing LLM social bias probing using actionable insights from social sciences. We then introduce EcoLevels - a framework that helps (a) determine appropriate bias probes, (b) reconcile conflicting findings across probes, and (c) generate predictions about bias generalization. Overall, we ground our analysis in social science research because many LLM probes are direct applications of human probes, and these fields have faced similar challenges when studying social bias in humans. Based on our work, we suggest how the next generation of LLM bias probing can (and should) benefit from decades of social science research.
Connecting Federated ADMM to Bayes
Swaroop, Siddharth, Khan, Mohammad Emtiyaz, Doshi-Velez, Finale
We provide new connections between two distinct federated learning approaches based on (i) ADMM and (ii) Variational Bayes (VB), and propose new variants by combining their complementary strengths. Specifically, we show that the dual variables in ADMM naturally emerge through the "site" parameters used in VB with isotropic Gaussian covariances. Using this, we derive two versions of ADMM from VB that use flexible covariances and functional regularisation, respectively. Through numerical experiments, we validate the improvements obtained in performance. The work shows connection between two fields that are believed to be fundamentally different and combines them to improve federated learning. The goal of federated learning is to train a global model in the central server by using the data distributed over many local clients (McMahan et al., 2016). Such distributed learning improves privacy, security, and robustness, but is challenging due to frequent communication needed to synchronise training among nodes. This is especially true when the data quality differs drastically from client to client and needs to be appropriately weighted. Designing new methods to deal with such challenges is an active area of research in federated learning. We focus on two distinct federated-learning approaches based on the Alternating Direction Method of Multipliers (ADMM) and Variational Bayes (VB), respectively. The ADMM approach synchronises the global and local models by using constrained optimisation and updates both primal and dual variables simultaneously.
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
Buçinca, Zana, Swaroop, Siddharth, Paluch, Amanda E., Doshi-Velez, Finale, Gajos, Krzysztof Z.
People's decision-making abilities often fail to improve or may even erode when they rely on AI for decision-support, even when the AI provides informative explanations. We argue this is partly because people intuitively seek contrastive explanations, which clarify the difference between the AI's decision and their own reasoning, while most AI systems offer "unilateral" explanations that justify the AI's decision but do not account for users' thinking. To align human-AI knowledge on decision tasks, we introduce a framework for generating human-centered contrastive explanations that explain the difference between AI's choice and a predicted, likely human choice about the same task. Results from a large-scale experiment (N = 628) demonstrate that contrastive explanations significantly enhance users' independent decision-making skills compared to unilateral explanations, without sacrificing decision accuracy. Amid rising deskilling concerns, our research demonstrates that incorporating human reasoning into AI design can foster human skill development.
Towards Optimizing Human-Centric Objectives in AI-Assisted Decision-Making With Offline Reinforcement Learning
Buçinca, Zana, Swaroop, Siddharth, Paluch, Amanda E., Murphy, Susan A., Gajos, Krzysztof Z.
Imagine if AI decision-support tools not only complemented our ability to make accurate decisions, but also improved our skills, boosted collaboration, and elevated the joy we derive from our tasks. Despite the potential to optimize a broad spectrum of such human-centric objectives, the design of current AI tools remains focused on decision accuracy alone. We propose offline reinforcement learning (RL) as a general approach for modeling human-AI decision-making to optimize human-AI interaction for diverse objectives. RL can optimize such objectives by tailoring decision support, providing the right type of assistance to the right person at the right time. We instantiated our approach with two objectives: human-AI accuracy on the decision-making task and human learning about the task and learned decision support policies from previous human-AI interaction data. We compared the optimized policies against several baselines in AI-assisted decision-making. Across two experiments (N=316 and N=964), our results demonstrated that people interacting with policies optimized for accuracy achieve significantly better accuracy -- and even human-AI complementarity -- compared to those interacting with any other type of AI support. Our results further indicated that human learning was more difficult to optimize than accuracy, with participants who interacted with learning-optimized policies showing significant learning improvement only at times. Our research (1) demonstrates offline RL to be a promising approach to model human-AI decision-making, leading to policies that may optimize human-centric objectives and provide novel insights about the AI-assisted decision-making space, and (2) emphasizes the importance of considering human-centric objectives beyond decision accuracy in AI-assisted decision-making, opening up the novel research challenge of optimizing human-AI interaction for such objectives.
Reinforcement Learning Interventions on Boundedly Rational Human Agents in Frictionful Tasks
Nofshin, Eura, Swaroop, Siddharth, Pan, Weiwei, Murphy, Susan, Doshi-Velez, Finale
Many important behavior changes are frictionful; they require individuals to expend effort over a long period with little immediate gratification. Here, an artificial intelligence (AI) agent can provide personalized interventions to help individuals stick to their goals. In these settings, the AI agent must personalize rapidly (before the individual disengages) and interpretably, to help us understand the behavioral interventions. In this paper, we introduce Behavior Model Reinforcement Learning (BMRL), a framework in which an AI agent intervenes on the parameters of a Markov Decision Process (MDP) belonging to a boundedly rational human agent. Our formulation of the human decision-maker as a planning agent allows us to attribute undesirable human policies (ones that do not lead to the goal) to their maladapted MDP parameters, such as an extremely low discount factor. Furthermore, we propose a class of tractable human models that captures fundamental behaviors in frictionful tasks. Introducing a notion of MDP equivalence specific to BMRL, we theoretically and empirically show that AI planning with our human models can lead to helpful policies on a wide range of more complex, ground-truth humans.
Adaptive interventions for both accuracy and time in AI-assisted human decision making
Swaroop, Siddharth, Buçinca, Zana, Doshi-Velez, Finale
In settings where users are both time-pressured and need high accuracy, such as doctors working in Emergency Rooms, we want to provide AI assistance that both increases accuracy and reduces time. However, different types of AI assistance have different benefits: some reduce time taken while increasing overreliance on AI, while others do the opposite. We therefore want to adapt what AI assistance we show depending on various properties (of the question and of the user) in order to best tradeoff our two objectives. We introduce a study where users have to prescribe medicines to aliens, and use it to explore the potential for adapting AI assistance. We find evidence that it is beneficial to adapt our AI assistance depending on the question, leading to good tradeoffs between time taken and accuracy. Future work would consider machine-learning algorithms (such as reinforcement learning) to automatically adapt quickly.
Differentially private partitioned variational inference
Heikkilä, Mikko A., Ashman, Matthew, Swaroop, Siddharth, Turner, Richard E., Honkela, Antti
Learning a privacy-preserving model from sensitive data which are distributed across multiple devices is an increasingly important problem. The problem is often formulated in the federated learning context, with the aim of learning a single global model while keeping the data distributed. Moreover, Bayesian learning is a popular approach for modelling, since it naturally supports reliable uncertainty estimates. However, Bayesian learning is generally intractable even with centralised non-private data and so approximation techniques such as variational inference are a necessity. Variational inference has recently been extended to the non-private federated learning setting via the partitioned variational inference algorithm. For privacy protection, the current gold standard is called differential privacy. Differential privacy guarantees privacy in a strong, mathematically clearly defined sense. In this paper, we present differentially private partitioned variational inference, the first general framework for learning a variational approximation to a Bayesian posterior distribution in the federated learning setting while minimising the number of communication rounds and providing differential privacy guarantees for data subjects. We propose three alternative implementations in the general framework, one based on perturbing local optimisation runs done by individual parties, and two based on perturbing updates to the global model (one using a version of federated averaging, the second one adding virtual parties to the protocol), and compare their properties both theoretically and empirically.
Modeling Mobile Health Users as Reinforcement Learning Agents
Shin, Eura, Swaroop, Siddharth, Pan, Weiwei, Murphy, Susan, Doshi-Velez, Finale
Mobile health (mHealth) technologies empower patients to adopt/maintain healthy behaviors in their daily lives, by providing interventions (e.g. push notifications) tailored to the user's needs. In these settings, without intervention, human decision making may be impaired (e.g. valuing near term pleasure over own long term goals). In this work, we formalize this relationship with a framework in which the user optimizes a (potentially impaired) Markov Decision Process (MDP) and the mHealth agent intervenes on the user's MDP parameters. We show that different types of impairments imply different types of optimal intervention. We also provide analytical and empirical explorations of these differences.
Knowledge-Adaptation Priors
Khan, Mohammad Emtiyaz, Swaroop, Siddharth
Humans and animals have a natural ability to quickly adapt to their surroundings, but machine-learning models, when subjected to changes, often require a complete retraining from scratch. We present Knowledge-adaptation priors (K-priors) to reduce the cost of retraining by enabling quick and accurate adaptation for a wide-variety of tasks and models. This is made possible by a combination of weight and function-space priors to reconstruct the gradients of the past, which recovers and generalizes many existing, but seemingly-unrelated, adaptation strategies. Training with simple first-order gradient methods can often recover the exact retrained model to an arbitrary accuracy by choosing a sufficiently large memory of the past data. Empirical results confirm that the adaptation can be cheap and accurate, and a promising alternative to retraining.
Generalized Variational Continual Learning
Loo, Noel, Swaroop, Siddharth, Turner, Richard E.
One strand of research has used probabilistic regularization for continual learning, with two of the main approaches in this vein being Online Elastic Weight Consolidation (Online EWC) and Variational Continual Learning (VCL). VCL employs variational inference, which in other settings has been improved empirically by applying likelihood-tempering. We show that applying this modification to VCL recovers Online EWC as a limiting case, allowing for interpolation between the two approaches. In order to mitigate the observed overpruning effect of VI, we take inspiration from a common multi-task architecture, neural networks with task-specific FiLM layers, and find that this addition leads to significant performance gains, specifically for variational methods. In the small-data regime, GVCL strongly outperforms existing baselines. In larger datasets, GVCL with FiLM layers outperforms or is competitive with existing baselines in terms of accuracy, whilst also providing significantly better calibration. Continual learning methods enable learning when a set of tasks changes over time. This topic is of practical interest as many real-world applications require models to be regularly updated as new data is collected or new tasks arise. Standard machine learning models and training procedures fail in these settings (French, 1999), so bespoke architectures and fitting procedures are required. This paper makes two main contributions to continual learning for neural networks. First, we develop a new regularization-based approach to continual learning. Regularization approaches adapt parameters to new tasks while keeping them close to settings that are appropriate for old tasks. Two popular approaches of this type are Variational Continual Learning (VCL) (Nguyen et al., 2018) and Online Elastic Weight Consolidation (Online EWC) (Kirkpatrick et al., 2017; Schwarz et al., 2018). The former is based on a variational approximation of a neural network's posterior distribution over weights, while the latter uses Laplace's approximation. In this paper, we propose Generalized Variational Continual Learning (GVCL) of which VCL and Online EWC are two special cases. Under this unified framework, we are able to combine the strengths of both approaches. GVCL is closely related to likelihood-tempered Variational Inference (VI), which has been found to improve performance in standard learning settings (Zhang et al., 2018; Osawa et al., 2019).