Goto

Collaborating Authors

 Swan, Jerry


Algebraic Dynamical Systems in Machine Learning

arXiv.org Artificial Intelligence

We introduce an algebraic analogue of dynamical systems, based on term rewriting. We show that a recursive function applied to the output of an iterated rewriting system defines a formal class of models into which all the main architectures for dynamic machine learning models (including recurrent neural networks, graph neural networks, and diffusion models) can be embedded. Considered in category theory, we also show that these algebraic models are a natural language for describing the compositionality of dynamic models. Furthermore, we propose that these models provide a template for the generalisation of the above dynamic models to learning problems on structured or non-numerical data, including 'hybrid symbolic-numeric' models.


Towards Metaheuristics "In the Large"

arXiv.org Artificial Intelligence

Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to support the development, analysis and comparison of new approaches. We argue that, via principled choice of infrastructure support, the field can pursue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.


The Text-Based Adventure AI Competition

arXiv.org Artificial Intelligence

Abstract--In 2016, 2017, and 2018 at the IEEE Conference on Computational Intelligence in Games, the authors of this paper ran a competition for agents that can play classic text-based adventure games. This competition fills a gap in existing game AI competitions that have typically focussed on traditional card/board games or modern video games with graphical interfaces. By providing a platform for evaluating agents in textbased adventures, the competition provides a novel benchmark for game AI with unique challenges for natural language understanding and generation. This paper summarises the three competitions ran in 2016, 2017, and 2018 (including details of open source implementations of both the competition framework and our competitors) and presents the results of an improved evaluation of these competitors across 20 games. I. INTRODUCTION Before the widespread availability of graphical displays, text adventures were one of the few game genres that owed their existence solely to computing. The first text adventure was Colossal Cave (also known simply as Adventure), written in 1976 by Will Crowther for the PDP-10 mainframe [1]. With the advent of home computing in the late 1970s, Colossal Cave and other games such as Zork were enjoyed by many. The majority of early text adventures used a narration-action loop that accepted simple commands of the general form VERB or VERB NOUN (e.g. In response to such commands, the programs provided a description of the immediate environment, e.g. 'You are in an open field on the west side of a white house with a boarded front door.


Guiding Evolutionary Learning by Searching for Regularities in Behavioral Trajectories: A Case for Representation Agnosticism

AAAI Conferences

An intelligent agent can display behavior that is not directly related to the task it learns. Depending on the adopted AI framework and task formulation, such behavior is sometimes attributed to environment exploration, or ignored as irrelevant, or even penalized as undesired. We postulate here that virtually every interaction of an agent with its learning environment can result in outcomes that carry information which can be potentially exploited to solve the task. To support this claim, we present Pattern Guided Evolutionary Algorithm (PANGEA), an extension of genetic programming (GP), a genre of evolutionary computation that aims at synthesizing programs that display the desired input-output behavior. PANGEA uses machine learning to search for regularities in intermediate outcomes of program execution (which are ignored in standard GP), more specifically for relationships between these outcomes and the desired program output. The information elicited in this way is used to guide the evolutionary learning process by appropriately adjusting program fitness. An experiment conducted on a suite of benchmarks demonstrates that this architecture makes agent learning more effective than in conventional GP. In the paper, we discuss the possible generalizations and extensions of this architecture and its relationships with other contemporary paradigms like novelty search and deep learning. In conclusion, we extrapolate PANGEA to postulate a dynamic and behavioral learning framework for intelligent agents.