Goto

Collaborating Authors

 Suri, Saksham


VeriGraph: Scene Graphs for Execution Verifiable Robot Planning

arXiv.org Artificial Intelligence

Recent advancements in vision-language models (VLMs) offer potential for robot task planning, but challenges remain due to VLMs' tendency to generate incorrect action sequences. To address these limitations, we propose VeriGraph, a novel framework that integrates VLMs for robotic planning while verifying action feasibility. VeriGraph employs scene graphs as an intermediate representation, capturing key objects and spatial relationships to improve plan verification and refinement. The system generates a scene graph from input images and uses it to iteratively check and correct action sequences generated by an LLM-based task planner, ensuring constraints are respected and actions are executable. Our approach significantly enhances task completion rates across diverse manipulation scenarios, outperforming baseline methods by 58% for language-based tasks and 30% for image-based tasks.


LARP: Tokenizing Videos with a Learned Autoregressive Generative Prior

arXiv.org Artificial Intelligence

In the first stage, LARP tokenizer is trained with a lightweight AR prior model to learn an AR-friendly latent space. In the second stage, an AR generative model is trained on LARP's discrete tokens to synthesize high-fidelity videos. We present LARP, a novel video tokenizer designed to overcome limitations in current video tokenization methods for autoregressive (AR) generative models. Unlike traditional patchwise tokenizers that directly encode local visual patches into discrete tokens, LARP introduces a holistic tokenization scheme that gathers information from the visual content using a set of learned holistic queries. This design allows LARP to capture more global and semantic representations, rather than being limited to local patch-level information. Furthermore, it offers flexibility by supporting an arbitrary number of discrete tokens, enabling adaptive and efficient tokenization based on the specific requirements of the task. To align the discrete token space with downstream AR generation tasks, LARP integrates a lightweight AR transformer as a training-time prior model that predicts the next token on its discrete latent space. By incorporating the prior model during training, LARP learns a latent space that is not only optimized for video reconstruction but is also structured in a way that is more conducive to autoregressive generation. Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark.


Diff2Lip: Audio Conditioned Diffusion Models for Lip-Synchronization

arXiv.org Artificial Intelligence

The task of lip synchronization (lip-sync) seeks to match the lips of human faces with different audio. It has various applications in the film industry as well as for creating virtual avatars and for video conferencing. This is a challenging problem as one needs to simultaneously introduce detailed, realistic lip movements while preserving the identity, pose, emotions, and image quality. Many of the previous methods trying to solve this problem suffer from image quality degradation due to a lack of complete contextual information. In this paper, we present Diff2Lip, an audio-conditioned diffusion-based model which is able to do lip synchronization in-the-wild while preserving these qualities. We train our model on Voxceleb2, a video dataset containing in-the-wild talking face videos. Extensive studies show that our method outperforms popular methods like Wav2Lip and PC-AVS in Fr\'echet inception distance (FID) metric and Mean Opinion Scores (MOS) of the users. We show results on both reconstruction (same audio-video inputs) as well as cross (different audio-video inputs) settings on Voxceleb2 and LRW datasets. Video results and code can be accessed from our project page ( https://soumik-kanad.github.io/diff2lip ).


Teaching Matters: Investigating the Role of Supervision in Vision Transformers

arXiv.org Artificial Intelligence

Vision Transformers (ViTs) have gained significant popularity in recent years and have proliferated into many applications. However, their behavior under different learning paradigms is not well explored. We compare ViTs trained through different methods of supervision, and show that they learn a diverse range of behaviors in terms of their attention, representations, and downstream performance. We also discover ViT behaviors that are consistent across supervision, including the emergence of Offset Local Attention Heads. These are self-attention heads that attend to a token adjacent to the current token with a fixed directional offset, a phenomenon that to the best of our knowledge has not been highlighted in any prior work. Our analysis shows that ViTs are highly flexible and learn to process local and global information in different orders depending on their training method. We find that contrastive self-supervised methods learn features that are competitive with explicitly supervised features, and they can even be superior for part-level tasks. We also find that the representations of reconstruction-based models show non-trivial similarity to contrastive self-supervised models. Project website (https://www.cs.umd.edu/~sakshams/vit_analysis) and code (https://www.github.com/mwalmer-umd/vit_analysis) are publicly available.