Goto

Collaborating Authors

 Sun, Yitong


Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study

arXiv.org Artificial Intelligence

Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish MultiTrust, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: truthfulness, safety, robustness, fairness, and privacy. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: https://multi-trust.github.io/.


RESenv: A Realistic Earthquake Simulation Environment based on Unreal Engine

arXiv.org Artificial Intelligence

Earthquakes have a significant impact on societies and economies, driving the need for effective search and rescue strategies. With the growing role of AI and robotics in these operations, high-quality synthetic visual data becomes crucial. Current simulation methods, mostly focusing on single building damages, often fail to provide realistic visuals for complex urban settings. To bridge this gap, we introduce an innovative earthquake simulation system using the Chaos Physics System in Unreal Engine. Our approach aims to offer detailed and realistic visual simulations essential for AI and robotic training in rescue missions. By integrating real seismic waveform data, we enhance the authenticity and relevance of our simulations, ensuring they closely mirror real-world earthquake scenarios. Leveraging the advanced capabilities of Unreal Engine, our system delivers not only high-quality visualisations but also real-time dynamic interactions, making the simulated environments more immersive and responsive. By providing advanced renderings, accurate physical interactions, and comprehensive geological movements, our solution outperforms traditional methods in efficiency and user experience. Our simulation environment stands out in its detail and realism, making it a valuable tool for AI tasks such as path planning and image recognition related to earthquake responses. We validate our approach through three AI-based tasks: similarity detection, path planning, and image segmentation.


Out-of-Distribution Detection with Class Ratio Estimation

arXiv.org Machine Learning

Density-based Out-of-distribution (OOD) detection has recently been shown unreliable for the task of detecting OOD images. Various density ratio based approaches achieve good empirical performance, however methods typically lack a principled probabilistic modelling explanation. In this work, we propose to unify density ratio based methods under a novel framework that builds energy-based models and employs differing base distributions. Under our framework, the density ratio can be viewed as the unnormalized density of an implicit semantic distribution. Further, we propose to directly estimate the density ratio of a data sample through class ratio estimation. We report competitive results on OOD image problems in comparison with recent work that alternatively requires training of deep generative models for the task. Our approach enables a simple and yet effective path towards solving the OOD detection problem.


Flow Based Models For Manifold Data

arXiv.org Machine Learning

Flow-based generative models typically define a latent space with dimensionality identical to the observational space. In many problems, however, the data does not populate the full ambient data-space that they natively reside in, rather inhabiting a lower-dimensional manifold. In such scenarios, flow-based models are unable to represent data structures exactly as their density will always have support off the data manifold, potentially resulting in degradation of model performance. In addition, the requirement for equal latent and data space dimensionality can unnecessarily increase complexity for contemporary flow models. Towards addressing these problems, we propose to learn a manifold prior that affords benefits to both sample generation and representation quality. An auxiliary benefit of our approach is the ability to identify the intrinsic dimension of the data distribution.


Penalty and Augmented Lagrangian Methods for Layer-parallel Training of Residual Networks

arXiv.org Artificial Intelligence

Algorithms for training residual networks (ResNets) typically require forward pass of data, followed by backpropagating of loss gradient to perform parameter updates, which can take many hours or even days for networks with hundreds of layers. Inspired by the penalty and augmented Lagrangian methods, a layer-parallel training algorithm is proposed in this work to overcome the scalability barrier caused by the serial nature of forward-backward propagation in deep residual learning. Moreover, by viewing the supervised classification task as a numerical discretization of the terminal control problem, we bridge the concept of synthetic gradient for decoupling backpropagation with the parareal method for solving differential equations, which not only offers a novel perspective on the design of synthetic loss function but also performs parameter updates with reduced storage overhead. Experiments on a preliminary example demonstrate that the proposed algorithm achieves comparable or even better testing accuracy to the full serial backpropagation approach, while enabling layer-parallelism can provide speedup over the traditional layer-serial training methods.


But How Does It Work in Theory? Linear SVM with Random Features

Neural Information Processing Systems

We prove that, under low noise assumptions, the support vector machine with $N\ll m$ random features (RFSVM) can achieve the learning rate faster than $O(1/\sqrt{m})$ on a training set with $m$ samples when an optimized feature map is used. Our work extends the previous fast rate analysis of random features method from least square loss to 0-1 loss. We also show that the reweighted feature selection method, which approximates the optimized feature map, helps improve the performance of RFSVM in experiments on a synthetic data set.


But How Does It Work in Theory? Linear SVM with Random Features

Neural Information Processing Systems

We prove that, under low noise assumptions, the support vector machine with $N\ll m$ random features (RFSVM) can achieve the learning rate faster than $O(1/\sqrt{m})$ on a training set with $m$ samples when an optimized feature map is used. Our work extends the previous fast rate analysis of random features method from least square loss to 0-1 loss. We also show that the reweighted feature selection method, which approximates the optimized feature map, helps improve the performance of RFSVM in experiments on a synthetic data set.


Random ReLU Features: Universality, Approximation, and Composition

arXiv.org Machine Learning

We propose random ReLU features models in this work. Its motivation is rooted in both kernel methods and neural networks. We prove the universality and generalization performance of random ReLU features. Parallel to Barron's theorem, we consider the ReLU feature class, extended from the reproducing kernel Hilbert space of random ReLU features, and prove a strong quantitative approximation theorem, where both inner weights and outer weights of the the neural network with ReLU nodes as an approximator are bounded by constants. We also prove a similar approximation theorem for composition of functions in ReLU feature class by multi-layer ReLU networks. Separation theorem between ReLU feature class and their composition is proved as a consequence of separation between shallow and deep networks. These results reveal nice properties of ReLU nodes from the view of approximation theory, providing support for regularization on weights of ReLU networks and for the use of random ReLU features in practice. Our experiments confirm that the performance of random ReLU features is comparable with random Fourier features. The idea of applying random nonlinear functions to generate features to improve regression and classification algorithms has been around for at least two decades; see, e.g., Igelnik and Pao (1995) and Huang et al. (2006b).


But How Does It Work in Theory? Linear SVM with Random Features

arXiv.org Machine Learning

We prove that, under low noise assumptions, the support vector machine with $N\ll m$ random features (RFSVM) can achieve the learning rate faster than $O(1/\sqrt{m})$ on a training set with $m$ samples when an optimized feature map is used. Our work extends the previous fast rate analysis of random features method from least square loss to 0-1 loss. We also show that the reweighted feature selection method, which approximates the optimized feature map, helps improve the performance of RFSVM in experiments on a synthetic data set.