Sun, Wen
Distributional Offline Policy Evaluation with Predictive Error Guarantees
Wu, Runzhe, Uehara, Masatoshi, Sun, Wen
We study the problem of estimating the distribution of the return of a policy using an offline dataset that is not generated from the policy, i.e., distributional offline policy evaluation (OPE). We propose an algorithm called Fitted Likelihood Estimation (FLE), which conducts a sequence of Maximum Likelihood Estimation (MLE) and has the flexibility of integrating any state-of-the-art probabilistic generative models as long as it can be trained via MLE. FLE can be used for both finite-horizon and infinite-horizon discounted settings where rewards can be multi-dimensional vectors. Our theoretical results show that for both finite-horizon and infinite-horizon discounted settings, FLE can learn distributions that are close to the ground truth under total variation distance and Wasserstein distance, respectively. Our theoretical results hold under the conditions that the offline data covers the test policy's traces and that the supervised learning MLE procedures succeed. Experimentally, we demonstrate the performance of FLE with two generative models, Gaussian mixture models and diffusion models. For the multi-dimensional reward setting, FLE with diffusion models is capable of estimating the complicated distribution of the return of a test policy.
Provably Efficient CVaR RL in Low-rank MDPs
Zhao, Yulai, Zhan, Wenhao, Hu, Xiaoyan, Leung, Ho-fung, Farnia, Farzan, Sun, Wen, Lee, Jason D.
We study risk-sensitive Reinforcement Learning (RL), where we aim to maximize the Conditional Value at Risk (CVaR) with a fixed risk tolerance $\tau$. Prior theoretical work studying risk-sensitive RL focuses on the tabular Markov Decision Processes (MDPs) setting. To extend CVaR RL to settings where state space is large, function approximation must be deployed. We study CVaR RL in low-rank MDPs with nonlinear function approximation. Low-rank MDPs assume the underlying transition kernel admits a low-rank decomposition, but unlike prior linear models, low-rank MDPs do not assume the feature or state-action representation is known. We propose a novel Upper Confidence Bound (UCB) bonus-driven algorithm to carefully balance the interplay between exploration, exploitation, and representation learning in CVaR RL. We prove that our algorithm achieves a sample complexity of $\tilde{O}\left(\frac{H^7 A^2 d^4}{\tau^2 \epsilon^2}\right)$ to yield an $\epsilon$-optimal CVaR, where $H$ is the length of each episode, $A$ is the capacity of action space, and $d$ is the dimension of representations. Computational-wise, we design a novel discretized Least-Squares Value Iteration (LSVI) algorithm for the CVaR objective as the planning oracle and show that we can find the near-optimal policy in a polynomial running time with a Maximum Likelihood Estimation oracle. To our knowledge, this is the first provably efficient CVaR RL algorithm in low-rank MDPs.
Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees
Zhou, Yifei, Sekhari, Ayush, Song, Yuda, Sun, Wen
Hybrid RL is the setting where an RL agent has access to both offline data and online data by interacting with the real-world environment. In this work, we propose a new hybrid RL algorithm that combines an on-policy actor-critic method with offline data. On-policy methods such as policy gradient and natural policy gradient (NPG) have shown to be more robust to model misspecification, though sometimes it may not be as sample efficient as methods that rely on off-policy learning. On the other hand, offline methods that depend on off-policy training often require strong assumptions in theory and are less stable to train in practice. Our new approach integrates a procedure of off-policy training on the offline data into an on-policy NPG framework. We show that our approach, in theory, can obtain a best-of-both-worlds type of result -- it achieves the state-of-art theoretical guarantees of offline RL when offline RL-specific assumptions hold, while at the same time maintaining the theoretical guarantees of on-policy NPG regardless of the offline RL assumptions' validity. Experimentally, in challenging rich-observation environments, we show that our approach outperforms a state-of-the-art hybrid RL baseline which only relies on off-policy policy optimization, demonstrating the empirical benefit of combining on-policy and off-policy learning. Our code is publicly available at https://github.com/YifeiZhou02/HNPG.
Future-Dependent Value-Based Off-Policy Evaluation in POMDPs
Uehara, Masatoshi, Kiyohara, Haruka, Bennett, Andrew, Chernozhukov, Victor, Jiang, Nan, Kallus, Nathan, Shi, Chengchun, Sun, Wen
We study off-policy evaluation (OPE) for partially observable MDPs (POMDPs) with general function approximation. Existing methods such as sequential importance sampling estimators and fitted-Q evaluation suffer from the curse of horizon in POMDPs. To circumvent this problem, we develop a novel model-free OPE method by introducing future-dependent value functions that take future proxies as inputs. Future-dependent value functions play similar roles as classical value functions in fully-observable MDPs. We derive a new Bellman equation for future-dependent value functions as conditional moment equations that use history proxies as instrumental variables. We further propose a minimax learning method to learn future-dependent value functions using the new Bellman equation. We obtain the PAC result, which implies our OPE estimator is consistent as long as futures and histories contain sufficient information about latent states, and the Bellman completeness. Finally, we extend our methods to learning of dynamics and establish the connection between our approach and the well-known spectral learning methods in POMDPs.
Offline Minimax Soft-Q-learning Under Realizability and Partial Coverage
Uehara, Masatoshi, Kallus, Nathan, Lee, Jason D., Sun, Wen
In offline reinforcement learning (RL) we have no opportunity to explore so we must make assumptions that the data is sufficient to guide picking a good policy, taking the form of assuming some coverage, realizability, Bellman completeness, and/or hard margin (gap). In this work we propose value-based algorithms for offline RL with PAC guarantees under just partial coverage, specifically, coverage of just a single comparator policy, and realizability of soft (entropy-regularized) Q-function of the single policy and a related function defined as a saddle point of certain minimax optimization problem. This offers refined and generally more lax conditions for offline RL. We further show an analogous result for vanilla Q-functions under a soft margin condition. To attain these guarantees, we leverage novel minimax learning algorithms to accurately estimate soft or vanilla Q-functions with $L^2$-convergence guarantees. Our algorithms' loss functions arise from casting the estimation problems as nonlinear convex optimization problems and Lagrangifying.
Learning to Generate Better Than Your LLM
Chang, Jonathan D., Brantley, Kiante, Ramamurthy, Rajkumar, Misra, Dipendra, Sun, Wen
Reinforcement learning (RL) has emerged as a powerful paradigm for fine-tuning Large Language Models (LLMs) for text generation. In particular, recent LLMs such as ChatGPT and GPT-4 can engage in fluent conversations with users after finetuning with RL. Capitalizing on key properties of text generation, we seek to investigate RL algorithms beyond general purpose algorithms like Proximal Policy Optimization (PPO). In particular, we extend RL algorithms to allow them to interact with a dynamic black-box guide LLM and propose RL with guided feedback (RLGF), a suite of RL algorithms for LLM fine-tuning. We provide two ways for the guide LLM to interact with the LLM to be optimized for maximizing rewards. The guide LLM can generate text which serves as additional starting states for the RL optimization procedure. The guide LLM can also be used to complete the partial sentences generated by the LLM that is being optimized, treating the guide LLM as an expert to imitate and surpass eventually. We experiment on the IMDB positive sentiment, CommonGen, and TL;DR summarization tasks. We show that our RL algorithms achieve higher performance than supervised learning (SL) and the RL baseline PPO, demonstrating the benefit of interaction with the guide LLM. On both CommonGen and TL;DR, we not only outperform our SL baselines but also improve upon PPO across a variety of metrics beyond the one we optimized for. Our code can be found at https://github.com/Cornell-RL/tril.
Making RL with Preference-based Feedback Efficient via Randomization
Wu, Runzhe, Sun, Wen
Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, by using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.
JoinGym: An Efficient Query Optimization Environment for Reinforcement Learning
Wang, Kaiwen, Wang, Junxiong, Li, Yueying, Kallus, Nathan, Trummer, Immanuel, Sun, Wen
Join order selection (JOS) is the problem of ordering join operations to minimize total query execution cost and it is the core NP-hard combinatorial optimization problem of query optimization. In this paper, we present JoinGym, a lightweight and easy-to-use query optimization environment for reinforcement learning (RL) that captures both the left-deep and bushy variants of the JOS problem. Compared to existing query optimization environments, the key advantages of JoinGym are usability and significantly higher throughput which we accomplish by simulating query executions entirely offline. Under the hood, JoinGym simulates a query plan's cost by looking up intermediate result cardinalities from a pre-computed dataset. We release a novel cardinality dataset for $3300$ SQL queries based on real IMDb workloads which may be of independent interest, e.g., for cardinality estimation. Finally, we extensively benchmark four RL algorithms and find that their cost distributions are heavy-tailed, which motivates future work in risk-sensitive RL. In sum, JoinGym enables users to rapidly prototype RL algorithms on realistic database problems without needing to setup and run live systems.
Provable Reward-Agnostic Preference-Based Reinforcement Learning
Zhan, Wenhao, Uehara, Masatoshi, Sun, Wen, Lee, Jason D.
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories, rather than explicit reward signals. While PbRL has demonstrated practical success in fine-tuning language models, existing theoretical work focuses on regret minimization and fails to capture most of the practical frameworks. In this study, we fill in such a gap between theoretical PbRL and practical algorithms by proposing a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired before collecting any human feedback. Theoretical analysis demonstrates that our algorithm requires less human feedback for learning the optimal policy under preference-based models with linear parameterization and unknown transitions, compared to the existing theoretical literature. Specifically, our framework can incorporate linear and low-rank MDPs with efficient sample complexity. Additionally, we investigate reward-agnostic RL with action-based comparison feedback and introduce an efficient querying algorithm tailored to this scenario.
Provable Offline Preference-Based Reinforcement Learning
Zhan, Wenhao, Uehara, Masatoshi, Kallus, Nathan, Lee, Jason D., Sun, Wen
In this paper, we investigate the problem of offline Preference-based Reinforcement Learning (PbRL) with human feedback where feedback is available in the form of preference between trajectory pairs rather than explicit rewards. Our proposed algorithm consists of two main steps: (1) estimate the implicit reward using Maximum Likelihood Estimation (MLE) with general function approximation from offline data and (2) solve a distributionally robust planning problem over a confidence set around the MLE. We consider the general reward setting where the reward can be defined over the whole trajectory and provide a novel guarantee that allows us to learn any target policy with a polynomial number of samples, as long as the target policy is covered by the offline data. This guarantee is the first of its kind with general function approximation. To measure the coverage of the target policy, we introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability coefficient. We also establish lower bounds that highlight the necessity of such concentrability and the difference from standard RL, where state-action-wise rewards are directly observed. We further extend and analyze our algorithm when the feedback is given over action pairs.