Sun, Wen
Efficient Imitation Under Misspecification
Espinosa-Dice, Nicolas, Choudhury, Sanjiban, Sun, Wen, Swamy, Gokul
Interactive imitation learning (IL) is a powerful paradigm for learning to make sequences of decisions from an expert demonstrating how to perform a task. Prior work in efficient imitation learning has focused on the realizable setting, where the expert's policy lies within the learner's policy class (i.e. the learner can perfectly imitate the expert in all states). However, in practice, perfect imitation of the expert is often impossible due to differences in state information and action space expressiveness (e.g. morphological differences between robots and humans.) In this paper, we consider the more general misspecified setting, where no assumptions are made about the expert policy's realizability. We introduce a novel structural condition, reward-agnostic policy completeness, and prove that it is sufficient for interactive IL algorithms to efficiently avoid the quadratically compounding errors that stymie offline approaches like behavioral cloning. We address an additional practical constraint-the case of limited expert data-and propose a principled method for using additional offline data to further improve the sample-efficiency of interactive IL algorithms. Finally, we empirically investigate the optimal reset distribution in efficient IL under misspecification with a suite of continuous control tasks.
Step-Video-TI2V Technical Report: A State-of-the-Art Text-Driven Image-to-Video Generation Model
Huang, Haoyang, Ma, Guoqing, Duan, Nan, Chen, Xing, Wan, Changyi, Ming, Ranchen, Wang, Tianyu, Wang, Bo, Lu, Zhiying, Li, Aojie, Zeng, Xianfang, Zhang, Xinhao, Yu, Gang, Yin, Yuhe, Wu, Qiling, Sun, Wen, An, Kang, Han, Xin, Sun, Deshan, Ji, Wei, Huang, Bizhu, Li, Brian, Wu, Chenfei, Huang, Guanzhe, Xiong, Huixin, He, Jiaxin, Wu, Jianchang, Yuan, Jianlong, Wu, Jie, Liu, Jiashuai, Guo, Junjing, Tan, Kaijun, Chen, Liangyu, Chen, Qiaohui, Sun, Ran, Yuan, Shanshan, Yin, Shengming, Liu, Sitong, Chen, Wei, Dai, Yaqi, Luo, Yuchu, Ge, Zheng, Guan, Zhisheng, Song, Xiaoniu, Zhou, Yu, Jiao, Binxing, Chen, Jiansheng, Li, Jing, Zhou, Shuchang, Zhang, Xiangyu, Xiu, Yi, Zhu, Yibo, Shum, Heung-Yeung, Jiang, Daxin
We present Step-Video-TI2V, a state-of-the-art text-driven image-to-video generation model with 30B parameters, capable of generating videos up to 102 frames based on both text and image inputs. We build Step-Video-TI2V-Eval as a new benchmark for the text-driven image-to-video task and compare Step-Video-TI2V with open-source and commercial TI2V engines using this dataset. Experimental results demonstrate the state-of-the-art performance of Step-Video-TI2V in the image-to-video generation task.
All Roads Lead to Likelihood: The Value of Reinforcement Learning in Fine-Tuning
Swamy, Gokul, Choudhury, Sanjiban, Sun, Wen, Wu, Zhiwei Steven, Bagnell, J. Andrew
From a first-principles perspective, it may seem odd that the strongest results in foundation model fine-tuning (FT) are achieved via a relatively complex, two-stage training procedure. Specifically, one first trains a reward model (RM) on some dataset (e.g. human preferences) before using it to provide online feedback as part of a downstream reinforcement learning (RL) procedure, rather than directly optimizing the policy parameters on the dataset via offline maximum likelihood estimation. In fact, from an information-theoretic perspective, we can only lose information via passing through a reward model and cannot create any new information via on-policy sampling. To explain this discrepancy, we scrutinize several hypotheses on the value of RL in FT through both theoretical and empirical lenses. Of the hypotheses considered, we find the most support for the explanation that on problems with a generation-verification gap, the combination of the ease of learning the relatively simple RM (verifier) from the preference data, coupled with the ability of the downstream RL procedure to then filter its search space to the subset of policies (generators) that are optimal for relatively simple verifiers is what leads to the superior performance of online FT.
$Q\sharp$: Provably Optimal Distributional RL for LLM Post-Training
Zhou, Jin Peng, Wang, Kaiwen, Chang, Jonathan, Gao, Zhaolin, Kallus, Nathan, Weinberger, Kilian Q., Brantley, Kianté, Sun, Wen
Reinforcement learning (RL) post-training is crucial for LLM alignment and reasoning, but existing policy-based methods, such as PPO and DPO, can fall short of fixing shortcuts inherited from pre-training. In this work, we introduce $Q\sharp$, a value-based algorithm for KL-regularized RL that guides the reference policy using the optimal regularized $Q$ function. We propose to learn the optimal $Q$ function using distributional RL on an aggregated online dataset. Unlike prior value-based baselines that guide the model using unregularized $Q$-values, our method is theoretically principled and provably learns the optimal policy for the KL-regularized RL problem. Empirically, $Q\sharp$ outperforms prior baselines in math reasoning benchmarks while maintaining a smaller KL divergence to the reference policy. Theoretically, we establish a reduction from KL-regularized RL to no-regret online learning, providing the first bounds for deterministic MDPs under only realizability. Thanks to distributional RL, our bounds are also variance-dependent and converge faster when the reference policy has small variance. In sum, our results highlight $Q\sharp$ as an effective approach for post-training LLMs, offering both improved performance and theoretical guarantees. The code can be found at https://github.com/jinpz/q_sharp.
Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction
Huang, Ailin, Wu, Boyong, Wang, Bruce, Yan, Chao, Hu, Chen, Feng, Chengli, Tian, Fei, Shen, Feiyu, Li, Jingbei, Chen, Mingrui, Liu, Peng, Miao, Ruihang, You, Wang, Chen, Xi, Yang, Xuerui, Huang, Yechang, Zhang, Yuxiang, Gong, Zheng, Zhang, Zixin, Zhou, Hongyu, Sun, Jianjian, Li, Brian, Feng, Chengting, Wan, Changyi, Hu, Hanpeng, Wu, Jianchang, Zhen, Jiangjie, Ming, Ranchen, Yuan, Song, Zhang, Xuelin, Zhou, Yu, Li, Bingxin, Ma, Buyun, Wang, Hongyuan, An, Kang, Ji, Wei, Li, Wen, Wen, Xuan, Kong, Xiangwen, Ma, Yuankai, Liang, Yuanwei, Mou, Yun, Ahmidi, Bahtiyar, Wang, Bin, Li, Bo, Miao, Changxin, Xu, Chen, Wang, Chenrun, Shi, Dapeng, Sun, Deshan, Hu, Dingyuan, Sai, Dula, Liu, Enle, Huang, Guanzhe, Yan, Gulin, Wang, Heng, Jia, Haonan, Zhang, Haoyang, Gong, Jiahao, Guo, Junjing, Liu, Jiashuai, Liu, Jiahong, Feng, Jie, Wu, Jie, Wu, Jiaoren, Yang, Jie, Wang, Jinguo, Zhang, Jingyang, Lin, Junzhe, Li, Kaixiang, Xia, Lei, Zhou, Li, Zhao, Liang, Gu, Longlong, Chen, Mei, Wu, Menglin, Li, Ming, Li, Mingxiao, Li, Mingliang, Liang, Mingyao, Wang, Na, Hao, Nie, Wu, Qiling, Tan, Qinyuan, Sun, Ran, Shuai, Shuai, Pang, Shaoliang, Yang, Shiliang, Gao, Shuli, Yuan, Shanshan, Liu, Siqi, Deng, Shihong, Jiang, Shilei, Liu, Sitong, Cao, Tiancheng, Wang, Tianyu, Deng, Wenjin, Xie, Wuxun, Ming, Weipeng, He, Wenqing, Sun, Wen, Han, Xin, Huang, Xin, Deng, Xiaomin, Liu, Xiaojia, Wu, Xin, Zhao, Xu, Wei, Yanan, Yu, Yanbo, Cao, Yang, Li, Yangguang, Ma, Yangzhen, Xu, Yanming, Wang, Yaoyu, Shi, Yaqiang, Wang, Yilei, Zhou, Yizhuang, Zhong, Yinmin, Zhang, Yang, Wei, Yaoben, Luo, Yu, Lu, Yuanwei, Yin, Yuhe, Luo, Yuchu, Ding, Yuanhao, Yan, Yuting, Dai, Yaqi, Yang, Yuxiang, Xie, Zhe, Ge, Zheng, Sun, Zheng, Huang, Zhewei, Chang, Zhichao, Guan, Zhisheng, Yang, Zidong, Zhang, Zili, Jiao, Binxing, Jiang, Daxin, Shum, Heung-Yeung, Chen, Jiansheng, Li, Jing, Zhou, Shuchang, Zhang, Xiangyu, Zhang, Xinhao, Zhu, Yibo
Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
Ma, Guoqing, Huang, Haoyang, Yan, Kun, Chen, Liangyu, Duan, Nan, Yin, Shengming, Wan, Changyi, Ming, Ranchen, Song, Xiaoniu, Chen, Xing, Zhou, Yu, Sun, Deshan, Zhou, Deyu, Zhou, Jian, Tan, Kaijun, An, Kang, Chen, Mei, Ji, Wei, Wu, Qiling, Sun, Wen, Han, Xin, Wei, Yanan, Ge, Zheng, Li, Aojie, Wang, Bin, Huang, Bizhu, Wang, Bo, Li, Brian, Miao, Changxing, Xu, Chen, Wu, Chenfei, Yu, Chenguang, Shi, Dapeng, Hu, Dingyuan, Liu, Enle, Yu, Gang, Yang, Ge, Huang, Guanzhe, Yan, Gulin, Feng, Haiyang, Nie, Hao, Jia, Haonan, Hu, Hanpeng, Chen, Hanqi, Yan, Haolong, Wang, Heng, Guo, Hongcheng, Xiong, Huilin, Xiong, Huixin, Gong, Jiahao, Wu, Jianchang, Wu, Jiaoren, Wu, Jie, Yang, Jie, Liu, Jiashuai, Li, Jiashuo, Zhang, Jingyang, Guo, Junjing, Lin, Junzhe, Li, Kaixiang, Liu, Lei, Xia, Lei, Zhao, Liang, Tan, Liguo, Huang, Liwen, Shi, Liying, Li, Ming, Li, Mingliang, Cheng, Muhua, Wang, Na, Chen, Qiaohui, He, Qinglin, Liang, Qiuyan, Sun, Quan, Sun, Ran, Wang, Rui, Pang, Shaoliang, Yang, Shiliang, Liu, Sitong, Liu, Siqi, Gao, Shuli, Cao, Tiancheng, Wang, Tianyu, Ming, Weipeng, He, Wenqing, Zhao, Xu, Zhang, Xuelin, Zeng, Xianfang, Liu, Xiaojia, Yang, Xuan, Dai, Yaqi, Yu, Yanbo, Li, Yang, Deng, Yineng, Wang, Yingming, Wang, Yilei, Lu, Yuanwei, Chen, Yu, Luo, Yu, Luo, Yuchu, Yin, Yuhe, Feng, Yuheng, Yang, Yuxiang, Tang, Zecheng, Zhang, Zekai, Yang, Zidong, Jiao, Binxing, Chen, Jiansheng, Li, Jing, Zhou, Shuchang, Zhang, Xiangyu, Zhang, Xinhao, Zhu, Yibo, Shum, Heung-Yeung, Jiang, Daxin
We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.
Avoiding $\mathbf{exp(R_{max})}$ scaling in RLHF through Preference-based Exploration
Chen, Mingyu, Chen, Yiding, Sun, Wen, Zhang, Xuezhou
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for large language model (LLM) alignment. This paper studies the setting of online RLHF and focus on improving sample efficiency. All existing algorithms in online RLHF, whether doing passive exploration or active exploration, suffer from a sample complexity that scales exponentially with the scale of the reward function. This fundamental limitation hinders their effectiveness in scenarios with heavily skewed preferences, e.g. questions with a unique correct solution. To address this, we introduce Self-Exploring Preference-Incentive Online Preference Optimization (SE-POPO), an online RLHF algorithm that for the first time achieves a sample complexity that scales polynomially with the reward scale, answering an open problem raised by Xie et al. (2024).. Theoretically, we demonstrate that the sample complexity of SE-POPO dominates that of existing exploration algorithms. Empirically, our systematic evaluation confirms that SE-POPO is more sample-efficient than both exploratory and non-exploratory baselines, in two primary application scenarios of RLHF as well as on public benchmarks, marking a significant step forward in RLHF algorithm design. The code is available at https://github.com/MYC000801/SE-POPO.
Diffusing States and Matching Scores: A New Framework for Imitation Learning
Wu, Runzhe, Chen, Yiding, Swamy, Gokul, Brantley, Kianté, Sun, Wen
Adversarial Imitation Learning is traditionally framed as a two-player zero-sum game between a learner and an adversarially chosen cost function, and can therefore be thought of as the sequential generalization of a Generative Adversarial Network (GAN). However, in recent years, diffusion models have emerged as a non-adversarial alternative to GANs that merely require training a score function via regression, yet produce generations of a higher quality. In response, we investigate how to lift insights from diffusion modeling to the sequential setting. We propose diffusing states and performing score-matching along diffused states to measure the discrepancy between the expert's and learner's states. Thus, our approach only requires training score functions to predict noises via standard regression, making it significantly easier and more stable to train than adversarial methods. Theoretically, we prove first-and second-order instance-dependent bounds with linear scaling in the horizon, proving that our approach avoids the compounding errors that stymie offline approaches to imitation learning. Empirically, we show our approach outperforms both GAN-style imitation learning baselines and discriminator-free imitation learning baselines across various continuous control problems, including complex tasks like controlling humanoids to walk, sit, crawl, and navigate through obstacles. Fundamentally, in imitation learning (IL, Osa et al. (2018)), we want to match the sequential behavior of an expert demonstrator. Different notions of what matching should mean for IL have been proposed in the literature, from f-divergences (Ho & Ermon, 2016; Ke et al., 2021) to Integral Probability Metrics (IPMs, Müller (1997); Sun et al. (2019); Kidambi et al. (2021); Swamy et al. (2021); Chang et al. (2021); Song et al. (2024)). To compute the chosen notion of divergence from the expert demonstrations so that the learner can then optimize it, it is common to train a discriminator (i.e. a classifier) between expert and learner data. This discriminator is then used as a reward function for a policy update, an approach known as inverse reinforcement learning (IRL, Abbeel & Ng (2004); Ziebart et al. (2008)).
Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Gao, Zhaolin, Zhan, Wenhao, Chang, Jonathan D., Swamy, Gokul, Brantley, Kianté, Lee, Jason D., Sun, Wen
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.
Correcting the Mythos of KL-Regularization: Direct Alignment without Overparameterization via Chi-squared Preference Optimization
Huang, Audrey, Zhan, Wenhao, Xie, Tengyang, Lee, Jason D., Sun, Wen, Krishnamurthy, Akshay, Foster, Dylan J.
Language model alignment methods, such as reinforcement learning from human feedback (RLHF), have led to impressive advances in language model capabilities, but existing techniques are limited by a widely observed phenomenon known as overoptimization, where the quality of the language model plateaus or degrades over the course of the alignment process. Overoptimization is often attributed to overfitting to an inaccurate reward model, and while it can be mitigated through online data collection, this is infeasible in many settings. This raises a fundamental question: Do existing offline alignment algorithms make the most of the data they have, or can their sample-efficiency be improved further? We address this question with a new algorithm for offline alignment, $\chi^2$-Preference Optimization ($\chi$PO). $\chi$PO is a one-line change to Direct Preference Optimization (DPO; Rafailov et al., 2023), which only involves modifying the logarithmic link function in the DPO objective. Despite this minimal change, $\chi$PO implicitly implements the principle of pessimism in the face of uncertainty via regularization with the $\chi^2$-divergence -- which quantifies uncertainty more effectively than KL-regularization -- and provably alleviates overoptimization, achieving sample-complexity guarantees based on single-policy concentrability -- the gold standard in offline reinforcement learning. $\chi$PO's simplicity and strong guarantees make it the first practical and general-purpose offline alignment algorithm that is provably robust to overoptimization.