Not enough data to create a plot.
Try a different view from the menu above.
Sun, Weiwei
Phonetic Reconstruction of the Consonant System of Middle Chinese via Mixed Integer Optimization
Sun, Weiwei, Luo, Xiaoxi
This paper is concerned with phonetic reconstruction of the consonant system of Middle Chinese. We propose to cast the problem as a Mixed Integer Programming problem, which is able to automatically explore homophonic information from ancient rhyme dictionaries and phonetic information from modern Chinese dialects, the descendants of Middle Chinese. Numerical evaluation on a wide range of synthetic and real data demonstrates the effectiveness and robustness of the new method. We apply the method to information from Guangyun and 20 modern Chinese dialects to obtain a new phonetic reconstruction result. A linguistically-motivated discussion of this result is also provided.
Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
Chen, Yiqun, Yan, Lingyong, Sun, Weiwei, Ma, Xinyu, Zhang, Yi, Wang, Shuaiqiang, Yin, Dawei, Yang, Yiming, Mao, Jiaxin
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models, thereby minimizing hallucinations. A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual modules and the overarching aim of generating accurate answers in question-answering (QA) tasks. Although recent efforts have explored reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on overly simplistic pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent. Specifically, we present MMOA-RAG, a Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals towards a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA datasets demonstrate that MMOA-RAG improves the overall pipeline performance and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and the adaptability of MMOA-RAG across different RAG components and datasets. The code of MMOA-RAG is on https://github.com/chenyiqun/MMOA-RAG.
Accelerating Quantum Emitter Characterization with Latent Neural Ordinary Differential Equations
Proppe, Andrew H., Lee, Kin Long Kelvin, Sun, Weiwei, Krajewska, Chantalle J., Tye, Oliver, Bawendi, Moungi G.
Deep neural network models can be used to learn complex dynamics from data and reconstruct sparse or noisy signals, thereby accelerating and augmenting experimental measurements. Evaluating the quantum optical properties of solid-state single-photon emitters is a time-consuming task that typically requires interferometric photon correlation experiments, such as Photon correlation Fourier spectroscopy (PCFS) which measures time-resolved single emitter lineshapes. Here, we demonstrate a latent neural ordinary differential equation model that can forecast a complete and noise-free PCFS experiment from a small subset of noisy correlation functions. By encoding measured photon correlations into an initial value problem, the NODE can be propagated to an arbitrary number of interferometer delay times. We demonstrate this with 10 noisy photon correlation functions that are used to extrapolate an entire de-noised interferograms of up to 200 stage positions, enabling up to a 20-fold speedup in experimental acquisition time from $\sim$3 hours to 10 minutes. Our work presents a new approach to greatly accelerate the experimental characterization of novel quantum emitter materials using deep learning.
Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering
Shi, Zhengliang, Zhang, Shuo, Sun, Weiwei, Gao, Shen, Ren, Pengjie, Chen, Zhumin, Ren, Zhaochun
Multi-Hop Question Answering (MHQA) tasks present a significant challenge for large language models (LLMs) due to the intensive knowledge required. Current solutions, like Retrieval-Augmented Generation, typically retrieve potential documents from an external corpus to read an answer. However, the performance of this retrieve-then-read paradigm is constrained by the retriever and the inevitable noise in the retrieved documents. To mitigate these challenges, we introduce a novel generate-then-ground (GenGround) framework, synergizing the parametric knowledge of LLMs and external documents to solve a multi-hop question. GenGround empowers LLMs to alternate two phases until the final answer is derived: (1) formulate a simpler, single-hop question and directly generate the answer; (2) ground the question-answer pair in retrieved documents, amending any wrong predictions in the answer. We also propose an instructional grounding distillation method to generalize our method into smaller models. Extensive experiments conducted on four datasets illustrate the superiority of our method.
TourRank: Utilizing Large Language Models for Documents Ranking with a Tournament-Inspired Strategy
Chen, Yiqun, Liu, Qi, Zhang, Yi, Sun, Weiwei, Shi, Daiting, Mao, Jiaxin, Yin, Dawei
Large Language Models (LLMs) are increasingly employed in zero-shot documents ranking, yielding commendable results. However, several significant challenges still persist in LLMs for ranking: (1) LLMs are constrained by limited input length, precluding them from processing a large number of documents simultaneously; (2) The output document sequence is influenced by the input order of documents, resulting in inconsistent ranking outcomes; (3) Achieving a balance between cost and ranking performance is quite challenging. To tackle these issues, we introduce a novel documents ranking method called TourRank, which is inspired by the tournament mechanism. This approach alleviates the impact of LLM's limited input length through intelligent grouping, while the tournament-like points system ensures robust ranking, mitigating the influence of the document input sequence. We test TourRank with different LLMs on the TREC DL datasets and the BEIR benchmark. Experimental results show that TourRank achieves state-of-the-art performance at a reasonable cost.
Leader Reward for POMO-Based Neural Combinatorial Optimization
Wang, Chaoyang, Cheng, Pengzhi, Li, Jingze, Sun, Weiwei
Deep neural networks based on reinforcement learning (RL) for solving combinatorial optimization (CO) problems are developing rapidly and have shown a tendency to approach or even outperform traditional solvers. However, existing methods overlook an important distinction: CO problems differ from other traditional problems in that they focus solely on the optimal solution provided by the model within a specific length of time, rather than considering the overall quality of all solutions generated by the model. In this paper, we propose Leader Reward and apply it during two different training phases of the Policy Optimization with Multiple Optima (POMO) [Kwon et al., 2020] model to enhance the model's ability to generate optimal solutions. This approach is applicable to a variety of CO problems, such as the Traveling Salesman Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP), and the Flexible Flow Shop Problem (FFSP), but also works well with other POMO-based models or inference phase's strategies. We demonstrate that Leader Reward greatly improves the quality of the optimal solutions generated by the model. Specifically, we reduce the POMO's gap to the optimum by more than 100 times on TSP100 with almost no additional computational overhead.
Improving the Robustness of Large Language Models via Consistency Alignment
Zhao, Yukun, Yan, Lingyong, Sun, Weiwei, Xing, Guoliang, Wang, Shuaiqiang, Meng, Chong, Cheng, Zhicong, Ren, Zhaochun, Yin, Dawei
Large language models (LLMs) have shown tremendous success in following user instructions and generating helpful responses. Nevertheless, their robustness is still far from optimal, as they may generate significantly inconsistent responses due to minor changes in the verbalized instructions. Recent literature has explored this inconsistency issue, highlighting the importance of continued improvement in the robustness of response generation. However, systematic analysis and solutions are still lacking. In this paper, we quantitatively define the inconsistency problem and propose a two-stage training framework consisting of instruction-augmented supervised fine-tuning and consistency alignment training. The first stage helps a model generalize on following instructions via similar instruction augmentations. In the second stage, we improve the diversity and help the model understand which responses are more aligned with human expectations by differentiating subtle differences in similar responses. The training process is accomplished by self-rewards inferred from the trained model at the first stage without referring to external human preference resources. We conduct extensive experiments on recent publicly available LLMs on instruction-following tasks and demonstrate the effectiveness of our training framework.
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Ju, Tianjie, Sun, Weiwei, Du, Wei, Yuan, Xinwei, Ren, Zhaochun, Liu, Gongshen
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ $\mathcal V$-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling
Chen, Yuqi, Ren, Kan, Wang, Yansen, Fang, Yuchen, Sun, Weiwei, Li, Dongsheng
Modeling continuous-time dynamics on irregular time series is critical to account for data evolution and correlations that occur continuously. Traditional methods including recurrent neural networks or Transformer models leverage inductive bias via powerful neural architectures to capture complex patterns. However, due to their discrete characteristic, they have limitations in generalizing to continuous-time data paradigms. Though neural ordinary differential equations (Neural ODEs) and their variants have shown promising results in dealing with irregular time series, they often fail to capture the intricate correlations within these sequences. It is challenging yet demanding to concurrently model the relationship between input data points and capture the dynamic changes of the continuous-time system. To tackle this problem, we propose ContiFormer that extends the relation modeling of vanilla Transformer to the continuous-time domain, which explicitly incorporates the modeling abilities of continuous dynamics of Neural ODEs with the attention mechanism of Transformers. We mathematically characterize the expressive power of ContiFormer and illustrate that, by curated designs of function hypothesis, many Transformer variants specialized in irregular time series modeling can be covered as a special case of ContiFormer. A wide range of experiments on both synthetic and real-world datasets have illustrated the superior modeling capacities and prediction performance of ContiFormer on irregular time series data.
Densify Your Labels: Unsupervised Clustering with Bipartite Matching for Weakly Supervised Point Cloud Segmentation
Xia, Shaobo, Yue, Jun, Kania, Kacper, Fang, Leyuan, Tagliasacchi, Andrea, Yi, Kwang Moo, Sun, Weiwei
We propose a weakly supervised semantic segmentation method for point clouds that predicts "per-point" labels from just "whole-scene" annotations while achieving the performance of recent fully supervised approaches. Our core idea is to propagate the scene-level labels to each point in the point cloud by creating pseudo labels in a conservative way. Specifically, we over-segment point cloud features via unsupervised clustering and associate scene-level labels with clusters through bipartite matching, thus propagating scene labels only to the most relevant clusters, leaving the rest to be guided solely via unsupervised clustering. We empirically demonstrate that over-segmentation and bipartite assignment plays a crucial role. We evaluate our method on ScanNet and S3DIS datasets, outperforming state of the art, and demonstrate that we can achieve results comparable to fully supervised methods.