Sun, Shuo
Multi-View Attention Syntactic Enhanced Graph Convolutional Network for Aspect-based Sentiment Analysis
Huang, Xiang, Peng, Hao, Sun, Shuo, Hao, Zhifeng, Lin, Hui, Wang, Shuhai
Aspect-based Sentiment Analysis (ABSA) is the task aimed at predicting the sentiment polarity of aspect words within sentences. Recently, incorporating graph neural networks (GNNs) to capture additional syntactic structure information in the dependency tree derived from syntactic dependency parsing has been proven to be an effective paradigm for boosting ABSA. Despite GNNs enhancing model capability by fusing more types of information, most works only utilize a single topology view of the dependency tree or simply conflate different perspectives of information without distinction, which limits the model performance. To address these challenges, in this paper, we propose a new multi-view attention syntactic enhanced graph convolutional network (MASGCN) that weighs different syntactic information of views using attention mechanisms. Specifically, we first construct distance mask matrices from the dependency tree to obtain multiple subgraph views for GNNs. To aggregate features from different views, we propose a multi-view attention mechanism to calculate the attention weights of views. Furthermore, to incorporate more syntactic information, we fuse the dependency type information matrix into the adjacency matrices and present a structural entropy loss to learn the dependency type adjacency matrix. Comprehensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art methods. The codes and datasets are available at https://github.com/SELGroup/MASGCN.
Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models
Wang, Bin, Zou, Xunlong, Sun, Shuo, Zhang, Wenyu, He, Yingxu, Liu, Zhuohan, Wei, Chengwei, Chen, Nancy F., Aw, AiTi
Existing Singlish spoken corpora have primarily focused on linguistic analysis and speech recognition Speech technologies have evolved over decades, tasks (Deterding and Low, 2001; Chen et al., progressing from modularized solutions for speech 2010; Lyu et al., 2010; Tan, 2019). Given the relatively recognition (Povey et al., 2011; Radford et al., small population of Singlish speakers, estimated 2023), speaker identification (Togneri and Pullella, at just a few million, resources for Singlish 2011), and gender recognition (Hechmi et al., speech corpora are significantly more limited compared 2021) with modularized toolkits like Kaldi (Povey to major languages like English, Chinese, et al., 2011) and ESPnet (Watanabe et al., 2018) French, and Spanish. Singapore's government to advanced solutions integrating large language agency, IMDA, has open-sourced the largest available models for multimodal understanding in an allencompassing, Singlish corpus, known as the National Speech omni-style approach (Team et al., Corpus (Koh et al., 2019).
Online MDP with Transition Prototypes: A Robust Adaptive Approach
Sun, Shuo, Qi, Meng, Shen, Zuo-Jun Max
In this work, we consider an online robust Markov Decision Process (MDP) where we have the information of finitely many prototypes of the underlying transition kernel. We consider an adaptively updated ambiguity set of the prototypes and propose an algorithm that efficiently identifies the true underlying transition kernel while guaranteeing the performance of the corresponding robust policy. To be more specific, we provide a sublinear regret of the subsequent optimal robust policy. We also provide an early stopping mechanism and a worst-case performance bound of the value function. In numerical experiments, we demonstrate that our method outperforms existing approaches, particularly in the early stage with limited data. This work contributes to robust MDPs by considering possible prior information about the underlying transition probability and online learning, offering both theoretical insights and practical algorithms for improved decision-making under uncertainty.
MERaLiON-AudioLLM: Bridging Audio and Language with Large Language Models
He, Yingxu, Liu, Zhuohan, Sun, Shuo, Wang, Bin, Zhang, Wenyu, Zou, Xunlong, Chen, Nancy F., Aw, Ai Ti
We introduce MERaLiON-AudioLLM (Multimodal Empathetic Reasoning and Learning in One Network), the first speech-text model tailored for Singapore's multilingual and multicultural landscape. Developed under the National Large Language Models Funding Initiative, Singapore, MERaLiON-AudioLLM integrates advanced speech and text processing to address the diverse linguistic nuances of local accents and dialects, enhancing accessibility and usability in complex, multilingual environments. Our results demonstrate improvements in both speech recognition and task-specific understanding, positioning MERaLiON-AudioLLM as a pioneering solution for region specific AI applications. We envision this release to set a precedent for future models designed to address localised linguistic and cultural contexts in a global framework.
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Lovenia, Holy, Mahendra, Rahmad, Akbar, Salsabil Maulana, Miranda, Lester James V., Santoso, Jennifer, Aco, Elyanah, Fadhilah, Akhdan, Mansurov, Jonibek, Imperial, Joseph Marvin, Kampman, Onno P., Moniz, Joel Ruben Antony, Habibi, Muhammad Ravi Shulthan, Hudi, Frederikus, Montalan, Railey, Ignatius, Ryan, Lopo, Joanito Agili, Nixon, William, Karlsson, Börje F., Jaya, James, Diandaru, Ryandito, Gao, Yuze, Amadeus, Patrick, Wang, Bin, Cruz, Jan Christian Blaise, Whitehouse, Chenxi, Parmonangan, Ivan Halim, Khelli, Maria, Zhang, Wenyu, Susanto, Lucky, Ryanda, Reynard Adha, Hermawan, Sonny Lazuardi, Velasco, Dan John, Kautsar, Muhammad Dehan Al, Hendria, Willy Fitra, Moslem, Yasmin, Flynn, Noah, Adilazuarda, Muhammad Farid, Li, Haochen, Lee, Johanes, Damanhuri, R., Sun, Shuo, Qorib, Muhammad Reza, Djanibekov, Amirbek, Leong, Wei Qi, Do, Quyet V., Muennighoff, Niklas, Pansuwan, Tanrada, Putra, Ilham Firdausi, Xu, Yan, Tai, Ngee Chia, Purwarianti, Ayu, Ruder, Sebastian, Tjhi, William, Limkonchotiwat, Peerat, Aji, Alham Fikri, Keh, Sedrick, Winata, Genta Indra, Zhang, Ruochen, Koto, Fajri, Yong, Zheng-Xin, Cahyawijaya, Samuel
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
AudioBench: A Universal Benchmark for Audio Large Language Models
Wang, Bin, Zou, Xunlong, Lin, Geyu, Sun, Shuo, Liu, Zhuohan, Zhang, Wenyu, Liu, Zhengyuan, Aw, AiTi, Chen, Nancy F.
We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments.
ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties
Li, Jiahui, Shen, Tianle, Gu, Zekai, Sun, Jiawei, Yuan, Chengran, Han, Yuhang, Sun, Shuo, Ang, Marcelo H. Jr
Motion prediction is a challenging problem in autonomous driving as it demands the system to comprehend stochastic dynamics and the multi-modal nature of real-world agent interactions. Diffusion models have recently risen to prominence, and have proven particularly effective in pedestrian motion prediction tasks. However, the significant time consumption and sensitivity to noise have limited the real-time predictive capability of diffusion models. In response to these impediments, we propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise. The core idea of our model is to learn a coarse-grained prior distribution of trajectory, which can skip a large number of denoise steps. This advancement not only boosts sampling efficiency but also maintains the fidelity of prediction accuracy. Our method meets the rigorous real-time operational standards essential for autonomous vehicles, enabling prompt trajectory generation that is vital for secure and efficient navigation. Through extensive experiments, our method speeds up the inference time to 136ms compared to standard diffusion model, and achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
ControlMTR: Control-Guided Motion Transformer with Scene-Compliant Intention Points for Feasible Motion Prediction
Sun, Jiawei, Yuan, Chengran, Sun, Shuo, Wang, Shanze, Han, Yuhang, Ma, Shuailei, Huang, Zefan, Wong, Anthony, Tee, Keng Peng, Ang, Marcelo H. Jr
The ability to accurately predict feasible multimodal future trajectories of surrounding traffic participants is crucial for behavior planning in autonomous vehicles. The Motion Transformer (MTR), a state-of-the-art motion prediction method, alleviated mode collapse and instability during training and enhanced overall prediction performance by replacing conventional dense future endpoints with a small set of fixed prior motion intention points. However, the fixed prior intention points make the MTR multi-modal prediction distribution over-scattered and infeasible in many scenarios. In this paper, we propose the ControlMTR framework to tackle the aforementioned issues by generating scene-compliant intention points and additionally predicting driving control commands, which are then converted into trajectories by a simple kinematic model with soft constraints. These control-generated trajectories will guide the directly predicted trajectories by an auxiliary loss function. Together with our proposed scene-compliant intention points, they can effectively restrict the prediction distribution within the road boundaries and suppress infeasible off-road predictions while enhancing prediction performance. Remarkably, without resorting to additional model ensemble techniques, our method surpasses the baseline MTR model across all performance metrics, achieving notable improvements of 5.22% in SoftmAP and a 4.15% reduction in MissRate. Our approach notably results in a 41.85% reduction in the cross-boundary rate of the MTR, effectively ensuring that the prediction distribution is confined within the drivable area.
High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization
Sun, Shuo, Mielle, Malcolm, Lilienthal, Achim J., Magnusson, Martin
We propose a dense RGBD SLAM system based on 3D Gaussian Splatting that provides metrically accurate pose tracking and visually realistic reconstruction. To this end, we first propose a Gaussian densification strategy based on the rendering loss to map unobserved areas and refine reobserved areas. Second, we introduce extra regularization parameters to alleviate the forgetting problem in the continuous mapping problem, where parameters tend to overfit the latest frame and result in decreasing rendering quality for previous frames. Both mapping and tracking are performed with Gaussian parameters by minimizing re-rendering loss in a differentiable way. Compared to recent neural and concurrently developed gaussian splatting RGBD SLAM baselines, our method achieves state-of-the-art results on the synthetic dataset Replica and competitive results on the real-world dataset TUM.
3QFP: Efficient neural implicit surface reconstruction using Tri-Quadtrees and Fourier feature Positional encoding
Sun, Shuo, Mielle, Malcolm, Lilienthal, Achim J., Magnusson, Martin
Neural implicit surface representations are currently receiving a lot of interest as a means to achieve high-fidelity surface reconstruction at a low memory cost, compared to traditional explicit representations.However, state-of-the-art methods still struggle with excessive memory usage and non-smooth surfaces. This is particularly problematic in large-scale applications with sparse inputs, as is common in robotics use cases. To address these issues, we first introduce a sparse structure, \emph{tri-quadtrees}, which represents the environment using learnable features stored in three planar quadtree projections. Secondly, we concatenate the learnable features with a Fourier feature positional encoding. The combined features are then decoded into signed distance values through a small multi-layer perceptron. We demonstrate that this approach facilitates smoother reconstruction with a higher completion ratio with fewer holes. Compared to two recent baselines, one implicit and one explicit, our approach requires only 10\%--50\% as much memory, while achieving competitive quality.