Goto

Collaborating Authors

 Sun, Shao-Hua


Efficient Action-Constrained Reinforcement Learning via Acceptance-Rejection Method and Augmented MDPs

arXiv.org Artificial Intelligence

Action-constrained reinforcement learning (ACRL) is a generic framework for learning control policies with zero action constraint violation, which is required by various safety-critical and resource-constrained applications. The existing ACRL methods can typically achieve favorable constraint satisfaction but at the cost of either high computational burden incurred by the quadratic programs (QP) or increased architectural complexity due to the use of sophisticated generative models. In this paper, we propose a generic and computationally efficient framework that can adapt a standard unconstrained RL method to ACRL through two modifications: (i) To enforce the action constraints, we leverage the classic acceptance-rejection method, where we treat the unconstrained policy as the proposal distribution and derive a modified policy with feasible actions. (ii) To improve the acceptance rate of the proposal distribution, we construct an augmented two-objective Markov decision process (MDP), which include additional self-loop state transitions and a penalty signal for the rejected actions. This augmented MDP incentives the learned policy to stay close to the feasible action sets. Through extensive experiments in both robot control and resource allocation domains, we demonstrate that the proposed framework enjoys faster training progress, better constraint satisfaction, and a lower action inference time simultaneously than the state-of-the-art ACRL methods. We have made the source code publicly available to encourage further research in this direction.


Diffusion Imitation from Observation

arXiv.org Artificial Intelligence

Learning from observation (LfO) aims to imitate experts by learning from state-only demonstrations without requiring action labels. Existing adversarial imitation learning approaches learn a generator agent policy to produce state transitions that are indistinguishable to a discriminator that learns to classify agent and expert state transitions. Despite its simplicity in formulation, these methods are often sensitive to hyperparameters and brittle to train. Motivated by the recent success of diffusion models in generative modeling, we propose to integrate a diffusion model into the adversarial imitation learning from observation framework. Specifically, we employ a diffusion model to capture expert and agent transitions by generating the next state, given the current state. Then, we reformulate the learning objective to train the diffusion model as a binary classifier and use it to provide "realness" rewards for policy learning. Our proposed framework, Diffusion Imitation from Observation (DIFO), demonstrates superior performance in various continuous control domains, including navigation, locomotion, manipulation, and games. Project page: https://nturobotlearninglab.github.io/DIFO


Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

arXiv.org Artificial Intelligence

Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward models built on large-scale datasets, limiting their applicability to scenarios where collecting such data is costly or difficult. To effectively and efficiently utilize human feedback, we develop a framework, HERO, which leverages online human feedback collected on the fly during model learning. Specifically, HERO features two key mechanisms: (1) Feedback-Aligned Representation Learning, an online training method that captures human feedback and provides informative learning signals for fine-tuning, and (2) Feedback-Guided Image Generation, which involves generating images from SD's refined initialization samples, enabling faster convergence towards the evaluator's intent. We demonstrate that HERO is 4x more efficient in online feedback for body part anomaly correction compared to the best existing method. Additionally, experiments show that HERO can effectively handle tasks like reasoning, counting, personalization, and reducing NSFW content with only 0.5K online feedback.


Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare Data Representation Learning

arXiv.org Artificial Intelligence

Multivariate time series (MTS) data, when sampled irregularly and asynchronously, often present extensive missing values. Conventional methodologies for MTS analysis tend to rely on temporal embeddings based on timestamps that necessitate subsequent imputations, yet these imputed values frequently deviate substantially from their actual counterparts, thereby compromising prediction accuracy. Furthermore, these methods typically fail to provide robust initial embeddings for values infrequently observed or even absent within the training set, posing significant challenges to model generalizability. In response to these challenges, we propose SCAlable Numerical Embedding (SCANE), a novel framework that treats each feature value as an independent token, effectively bypassing the need for imputation. SCANE regularizes the traits of distinct feature embeddings and enhances representational learning through a scalable embedding mechanism. Coupling SCANE with the Transformer Encoder architecture, we develop the Scalable nUMerical eMbeddIng Transformer (SUMMIT), which is engineered to deliver precise predictive outputs for MTS characterized by prevalent missing entries. Our experimental validation, conducted across three disparate electronic health record (EHR) datasets marked by elevated missing value frequencies, confirms the superior performance of SUMMIT over contemporary state-of-the-art approaches addressing similar challenges. These results substantiate the efficacy of SCANE and SUMMIT, underscoring their potential applicability across a broad spectrum of MTS data analytical tasks.


Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search

arXiv.org Artificial Intelligence

Programmatic reinforcement learning (PRL) has been explored for representing policies through programs as a means to achieve interpretability and generalization. Despite promising outcomes, current state-of-the-art PRL methods are hindered by sample inefficiency, necessitating tens of millions of program-environment interactions. To tackle this challenge, we introduce a novel LLM-guided search framework (LLM-GS). Our key insight is to leverage the programming expertise and common sense reasoning of LLMs to enhance the efficiency of assumption-free, random-guessing search methods. We address the challenge of LLMs' inability to generate precise and grammatically correct programs in domain-specific languages (DSLs) by proposing a Pythonic-DSL strategy - an LLM is instructed to initially generate Python codes and then convert them into DSL programs. To further optimize the LLM-generated programs, we develop a search algorithm named Scheduled Hill Climbing, designed to efficiently explore the programmatic search space to consistently improve the programs. Experimental results in the Karel domain demonstrate the superior effectiveness and efficiency of our LLM-GS framework. Extensive ablation studies further verify the critical role of our Pythonic-DSL strategy and Scheduled Hill Climbing algorithm.


Diffusion-Reward Adversarial Imitation Learning

arXiv.org Artificial Intelligence

Imitation learning aims to learn a policy from observing expert demonstrations without access to reward signals from environments. Generative adversarial imitation learning (GAIL) formulates imitation learning as adversarial learning, employing a generator policy learning to imitate expert behaviors and discriminator learning to distinguish the expert demonstrations from agent trajectories. Despite its encouraging results, GAIL training is often brittle and unstable. Inspired by the recent dominance of diffusion models in generative modeling, this work proposes Diffusion-Reward Adversarial Imitation Learning (DRAIL), which integrates a diffusion model into GAIL, aiming to yield more precise and smoother rewards for policy learning. Specifically, we propose a diffusion discriminative classifier to construct an enhanced discriminator; then, we design diffusion rewards based on the classifier's output for policy learning. We conduct extensive experiments in navigation, manipulation, and locomotion, verifying DRAIL's effectiveness compared to prior imitation learning methods. Moreover, additional experimental results demonstrate the generalizability and data efficiency of DRAIL. Visualized learned reward functions of GAIL and DRAIL suggest that DRAIL can produce more precise and smoother rewards.


LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown exceptional proficiency in natural language processing but often fall short of generating creative and original responses to open-ended questions. To enhance LLM creativity, our key insight is to emulate the human process of inducing collective creativity through engaging discussions with participants from diverse backgrounds and perspectives. To this end, we propose LLM Discussion, a three-phase discussion framework that facilitates vigorous and diverging idea exchanges and ensures convergence to creative answers. Moreover, we adopt a role-playing technique by assigning distinct roles to LLMs to combat the homogeneity of LLMs. We evaluate the efficacy of the proposed framework with the Alternative Uses Test, Similarities Test, Instances Test, and Scientific Creativity Test through both LLM evaluation and human study. Our proposed framework outperforms single-LLM approaches and existing multi-LLM frameworks across various creativity metrics.


REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR

arXiv.org Artificial Intelligence

Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN, Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is a segmental structure segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance.


Addressing Long-Horizon Tasks by Integrating Program Synthesis and State Machines

arXiv.org Artificial Intelligence

Deep reinforcement learning excels in various domains but lacks generalizability and interoperability. Programmatic RL methods (Trivedi et al., 2021; Liu et al., 2023) reformulate solving RL tasks as synthesizing interpretable programs that can be executed in the environments. Despite encouraging results, these methods are limited to short-horizon tasks. On the other hand, representing RL policies using state machines (Inala et al., 2020) can inductively generalize to long-horizon tasks; however, it struggles to scale up to acquire diverse and complex behaviors. This work proposes Program Machine Policies (POMPs), which bridge the advantages of programmatic RL and state machine policies, allowing for the representation of complex behaviors and the address of long-term tasks. Specifically, we introduce a method that can retrieve a set of effective, diverse, compatible programs. Then, we use these programs as modes of a state machine and learn a transition function to transition among mode programs, allowing for capturing long-horizon repetitive behaviors. Our proposed framework outperforms programmatic RL and deep RL baselines on various tasks and demonstrates the ability to generalize to even longer horizons without any fine-tuning inductively. Ablation studies justify the effectiveness of our proposed search algorithm for retrieving a set of programs as modes.


Diffusion Model-Augmented Behavioral Cloning

arXiv.org Artificial Intelligence

Imitation learning addresses the challenge of learning by observing an expert's demonstrations without access to reward signals from environments. Most existing imitation learning methods that do not require interacting with environments either model the expert distribution as the conditional probability p(a|s) (e.g., behavioral cloning, BC) or the joint probability p(s, a). Despite its simplicity, modeling the conditional probability with BC usually struggles with generalization. While modeling the joint probability can improve generalization performance, the inference procedure is often time-consuming, and the model can suffer from manifold overfitting. This work proposes an imitation learning framework that benefits from modeling both the conditional and joint probability of the expert distribution. Our proposed diffusion model-augmented behavioral cloning (DBC) employs a diffusion model trained to model expert behaviors and learns a policy to optimize both the BC loss (conditional) and our proposed diffusion model loss (joint). DBC outperforms baselines in various continuous control tasks in navigation, robot arm manipulation, dexterous manipulation, and locomotion. We design additional experiments to verify the limitations of modeling either the conditional probability or the joint probability of the expert distribution, as well as compare different generative models. Ablation studies justify the effectiveness of our design choices. Recently, the success of deep reinforcement learning (DRL) (Mnih et al., 2015; Lillicrap et al., 2016; Arulkumaran et al., 2017) has inspired the research community to develop DRL frameworks to control robots, aiming to automate the process of designing sensing, planning, and control algorithms by letting the robot learn in an end-to-end fashion. Yet, acquiring complex skills through trial and error can still lead to undesired behaviors even with sophisticated reward design (Christiano et al., 2017; Leike et al., 2018; Lee et al., 2019). Moreover, the exploring process could damage expensive robotic platforms or even be dangerous to humans (Garcıa and Fernández, 2015; Levine et al., 2020). To overcome this issue, imitation learning (i.e., learning from demonstration) (Schaal, 1997; Osa et al., 2018) has received growing attention, whose aim is to learn a policy from expert demonstrations, which are often more accessible than appropriate reward functions for reinforcement learning. Among various imitation learning directions, adversarial imitation learning (Ho and Ermon, 2016; Zolna et al., 2021; Kostrikov et al., 2019) and inverse reinforcement learning (Ng and Russell, 2000; Abbeel and Ng, 2004) have achieved encouraging results in a variety of domains. Yet, these methods require interacting with environments, which can still be expensive or even dangerous. On the other hand, behavioral cloning (BC) (Pomerleau, 1989; Bain and Sammut, 1995) does not require interacting with environments.