Sun, Jiachen
Optimizing GPT for Video Understanding: Zero-Shot Performance and Prompt Engineering
Beliaev, Mark, Yang, Victor, Raju, Madhura, Sun, Jiachen, Hu, Xinghai
In this study, we tackle industry challenges in video content classification by exploring and optimizing GPT-based models for zero-shot classification across seven critical categories of video quality. We contribute a novel approach to improving GPT's performance through prompt optimization and policy refinement, demonstrating that simplifying complex policies significantly reduces false negatives. Additionally, we introduce a new decomposition-aggregation-based prompt engineering technique, which outperforms traditional single-prompt methods. These experiments, conducted on real industry problems, show that thoughtful prompt design can substantially enhance GPT's performance without additional finetuning, offering an effective and scalable solution for improving video classification systems across various domains in industry.
Cocoon: Robust Multi-Modal Perception with Uncertainty-Aware Sensor Fusion
Cho, Minkyoung, Cao, Yulong, Sun, Jiachen, Zhang, Qingzhao, Pavone, Marco, Park, Jeong Joon, Yang, Heng, Mao, Z. Morley
An important paradigm in 3D object detection is the use of multiple modalities to enhance accuracy in both normal and challenging conditions, particularly for long-tail scenarios. To address this, recent studies have explored two directions of adaptive approaches: MoE-based adaptive fusion, which struggles with uncertainties arising from distinct object configurations, and late fusion for output-level adaptive fusion, which relies on separate detection pipelines and limits comprehensive understanding. In this work, we introduce Cocoon, an object- and feature-level uncertainty-aware fusion framework. The key innovation lies in uncertainty quantification for heterogeneous representations, enabling fair comparison across modalities through the introduction of a feature aligner and a learnable surrogate ground truth, termed feature impression. We also define a training objective to ensure that their relationship provides a valid metric for uncertainty quantification. Cocoon consistently outperforms existing static and adaptive methods in both normal and challenging conditions, including those with natural and artificial corruptions. Furthermore, we show the validity and efficacy of our uncertainty metric across diverse datasets.
ELFS: Enhancing Label-Free Coreset Selection via Clustering-based Pseudo-Labeling
Zheng, Haizhong, Tsai, Elisa, Lu, Yifu, Sun, Jiachen, Bartoldson, Brian R., Kailkhura, Bhavya, Prakash, Atul
High-quality human-annotated data is crucial for modern deep learning pipelines, yet the human annotation process is both costly and time-consuming. Given a constrained human labeling budget, selecting an informative and representative data subset for labeling can significantly reduce human annotation effort. Well-performing state-of-the-art (SOTA) coreset selection methods require ground-truth labels over the whole dataset, failing to reduce the human labeling burden. Meanwhile, SOTA label-free coreset selection methods deliver inferior performance due to poor geometry-based scores. In this paper, we introduce ELFS, a novel label-free coreset selection method. ELFS employs deep clustering to estimate data difficulty scores without ground-truth labels. Furthermore, ELFS uses a simple but effective double-end pruning method to mitigate bias on calculated scores, which further improves the performance on selected coresets. We evaluate ELFS on five vision benchmarks and show that ELFS consistently outperforms SOTA label-free baselines. For instance, at a 90% pruning rate, ELFS surpasses the best-performing baseline by 5.3% on CIFAR10 and 7.1% on CIFAR100. Moreover, ELFS even achieves comparable performance to supervised coreset selection at low pruning rates (e.g., 30% and 50%) on CIFAR10 and ImageNet-1K.
Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors
Sun, Jiachen, Wang, Changsheng, Wang, Jiongxiao, Zhang, Yiwei, Xiao, Chaowei
Large language models have become increasingly prominent, also signaling a shift towards multimodality as the next frontier in artificial intelligence, where their embeddings are harnessed as prompts to generate textual content. Vision-language models (VLMs) stand at the forefront of this advancement, offering innovative ways to combine visual and textual data for enhanced understanding and interaction. However, this integration also enlarges the attack surface. Patch-based adversarial attack is considered the most realistic threat model in physical vision applications, as demonstrated in many existing literature. In this paper, we propose to address patched visual prompt injection, where adversaries exploit adversarial patches to generate target content in VLMs. Our investigation reveals that patched adversarial prompts exhibit sensitivity to pixel-wise randomization, a trait that remains robust even against adaptive attacks designed to counteract such defenses. Leveraging this insight, we introduce SmoothVLM, a defense mechanism rooted in smoothing techniques, specifically tailored to protect VLMs from the threat of patched visual prompt injectors. Our framework significantly lowers the attack success rate to a range between 0% and 5.0% on two leading VLMs, while achieving around 67.3% to 95.0% context recovery of the benign images, demonstrating a balance between security and usability.
CALICO: Self-Supervised Camera-LiDAR Contrastive Pre-training for BEV Perception
Sun, Jiachen, Zheng, Haizhong, Zhang, Qingzhao, Prakash, Atul, Mao, Z. Morley, Xiao, Chaowei
Perception is crucial in the realm of autonomous driving systems, where bird's eye view (BEV)-based architectures have recently reached state-of-the-art performance. The desirability of self-supervised representation learning stems from the expensive and laborious process of annotating 2D and 3D data. Although previous research has investigated pretraining methods for both LiDAR and camera-based 3D object detection, a unified pretraining framework for multimodal BEV perception is missing. In this study, we introduce CALICO, a novel framework that applies contrastive objectives to both LiDAR and camera backbones. Specifically, CALICO incorporates two stages: point-region contrast (PRC) and region-aware distillation (RAD). PRC better balances the region- and scene-level representation learning on the LiDAR modality and offers significant performance improvement compared to existing methods. RAD effectively achieves contrastive distillation on our self-trained teacher model. CALICO's efficacy is substantiated by extensive evaluations on 3D object detection and BEV map segmentation tasks, where it delivers significant performance improvements. Notably, CALICO outperforms the baseline method by 10.5% and 8.6% on NDS and mAP. Moreover, CALICO boosts the robustness of multimodal 3D object detection against adversarial attacks and corruption. Additionally, our framework can be tailored to different backbones and heads, positioning it as a promising approach for multimodal BEV perception.
Leveraging Hierarchical Feature Sharing for Efficient Dataset Condensation
Zheng, Haizhong, Sun, Jiachen, Wu, Shutong, Kailkhura, Bhavya, Mao, Zhuoqing, Xiao, Chaowei, Prakash, Atul
Given a real-world dataset, data condensation (DC) aims to synthesize a significantly smaller dataset that captures the knowledge of this dataset for model training with high performance. Recent works propose to enhance DC with data parameterization, which condenses data into parameterized data containers rather than pixel space. The intuition behind data parameterization is to encode shared features of images to avoid additional storage costs. In this paper, we recognize that images share common features in a hierarchical way due to the inherent hierarchical structure of the classification system, which is overlooked by current data parameterization methods. To better align DC with this hierarchical nature and encourage more efficient information sharing inside data containers, we propose a novel data parameterization architecture, Hierarchical Memory Network (HMN). HMN stores condensed data in a three-tier structure, representing the dataset-level, class-level, and instance-level features. Another helpful property of the hierarchical architecture is that HMN naturally ensures good independence among images despite achieving information sharing. This enables instance-level pruning for HMN to reduce redundant information, thereby further minimizing redundancy and enhancing performance. We evaluate HMN on four public datasets (SVHN, CIFAR10, CIFAR100, and Tiny-ImageNet) and compare HMN with eight DC baselines. The evaluation results show that our proposed method outperforms all baselines, even when trained with a batch-based loss consuming less GPU memory.
VPA: Fully Test-Time Visual Prompt Adaptation
Sun, Jiachen, Ibrahim, Mark, Hall, Melissa, Evtimov, Ivan, Mao, Z. Morley, Ferrer, Cristian Canton, Hazirbas, Caner
Textual prompt tuning has demonstrated significant performance improvements in adapting natural language processing models to a variety of downstream tasks by treating hand-engineered prompts as trainable parameters. Inspired by the success of textual prompting, several studies have investigated the efficacy of visual prompt tuning. In this work, we present Visual Prompt Adaptation (VPA), the first framework that generalizes visual prompting with test-time adaptation. VPA introduces a small number of learnable tokens, enabling fully test-time and storage-efficient adaptation without necessitating source-domain information. We examine our VPA design under diverse adaptation settings, encompassing single-image, batched-image, and pseudo-label adaptation. We evaluate VPA on multiple tasks, including out-of-distribution (OOD) generalization, corruption robustness, and domain adaptation. Experimental results reveal that VPA effectively enhances OOD generalization by 3.3% across various models, surpassing previous test-time approaches. Furthermore, we show that VPA improves corruption robustness by 6.5% compared to strong baselines. Finally, we demonstrate that VPA also boosts domain adaptation performance by relatively 5.2%. Our VPA also exhibits marked effectiveness in improving the robustness of zero-shot recognition for vision-language models.
Breaking Correlation Shift via Conditional Invariant Regularizer
Yi, Mingyang, Wang, Ruoyu, Sun, Jiachen, Li, Zhenguo, Ma, Zhi-Ming
Recently, generalization on out-of-distribution (OOD) data with correlation shift has attracted great attentions. The correlation shift is caused by the spurious attributes that correlate to the class label, as the correlation between them may vary in training and test data. For such a problem, we show that given the class label, the models that are conditionally independent of spurious attributes are OOD generalizable. Based on this, a metric Conditional Spurious Variation (CSV) which controls the OOD generalization error, is proposed to measure such conditional independence. To improve the OOD generalization, we regularize the training process with the proposed CSV. Under mild assumptions, our training objective can be formulated as a nonconvex-concave mini-max problem. An algorithm with a provable convergence rate is proposed to solve the problem. Extensive empirical results verify our algorithm's efficacy in improving OOD generalization.
Benchmarking Robustness of 3D Point Cloud Recognition Against Common Corruptions
Sun, Jiachen, Zhang, Qingzhao, Kailkhura, Bhavya, Yu, Zhiding, Xiao, Chaowei, Mao, Z. Morley
Deep neural networks on 3D point cloud data have been widely used in the real world, especially in safety-critical applications. However, their robustness against corruptions is less studied. In this paper, we present ModelNet40-C, the first comprehensive benchmark on 3D point cloud corruption robustness, consisting of 15 common and realistic corruptions. Our evaluation shows a significant gap between the performances on ModelNet40 and ModelNet40-C for state-of-the-art (SOTA) models. To reduce the gap, we propose a simple but effective method by combining PointCutMix-R and TENT after evaluating a wide range of augmentation and test-time adaptation strategies. We identify a number of critical insights for future studies on corruption robustness in point cloud recognition. For instance, we unveil that Transformer-based architectures with proper training recipes achieve the strongest robustness. We hope our in-depth analysis will motivate the development of robust training strategies or architecture designs in the 3D point cloud domain. Our codebase and dataset are included in https://github.com/jiachens/ModelNet40-C
Certified Adversarial Defenses Meet Out-of-Distribution Corruptions: Benchmarking Robustness and Simple Baselines
Sun, Jiachen, Mehra, Akshay, Kailkhura, Bhavya, Chen, Pin-Yu, Hendrycks, Dan, Hamm, Jihun, Mao, Z. Morley
Certified robustness guarantee gauges a model's robustness to test-time attacks and can assess the model's readiness for deployment in the real world. In this work, we critically examine how the adversarial robustness guarantees from randomized smoothing-based certification methods change when state-of-the-art certifiably robust models encounter out-of-distribution (OOD) data. Our analysis demonstrates a previously unknown vulnerability of these models to low-frequency OOD data such as weather-related corruptions, rendering these models unfit for deployment in the wild. To alleviate this issue, we propose a novel data augmentation scheme, FourierMix, that produces augmentations to improve the spectral coverage of the training data. Furthermore, we propose a new regularizer that encourages consistent predictions on noise perturbations of the augmented data to improve the quality of the smoothed models. We find that FourierMix augmentations help eliminate the spectral bias of certifiably robust models enabling them to achieve significantly better robustness guarantees on a range of OOD benchmarks. Our evaluation also uncovers the inability of current OOD benchmarks at highlighting the spectral biases of the models. To this end, we propose a comprehensive benchmarking suite that contains corruptions from different regions in the spectral domain. Evaluation of models trained with popular augmentation methods on the proposed suite highlights their spectral biases and establishes the superiority of FourierMix trained models at achieving better-certified robustness guarantees under OOD shifts over the entire frequency spectrum.