Sukthankar, Gita


Intelligently Assisting Human-Guided Quadcopter Photography

AAAI Conferences

Drones are a versatile platform for both amateur and professional photographers, enabling them to capture photos that are impossible to shoot with ground-based cameras. However, when guided by inexperienced pilots, they have a high incidence of collisions, crashes, and poorly framed photographs. This paper presents an intelligent user interface for photographing objects that is robust against navigation errors and reliably collects high quality photographs. By retaining the human in the loop, our system is faster and more selective than purely autonomous UAVs that employ simple coverage algorithms. The intelligent user interface operates in multiple modes, allowing the user to either directly control the quadcopter or fly in a semi-autonomous mode around a target object in the environment. To evaluate the interface, users completed a data set collection task in which they were asked to photograph objects from multiple views. Our sketch-based control paradigm facilitated task completion, reduced crashes, and was favorably reviewed by the participants.


Learning Continuous State/Action Models for Humanoid Robots

AAAI Conferences

Reinforcement learning (RL) is a popular choice for solving robotic control problems. However, applying RL techniques to controlling humanoid robots with high degrees of freedom remains problematic due to the difficulty of acquiring sufficient training data. The problem is compounded by the fact that most real-world problems involve continuous states and actions. In order for RL to be scalable to these situations it is crucial that the algorithm be sample efficient. Model-based methods tend to be more data efficient than model-free approaches and have the added advantage that a single model can generalize to multiple control problems. This paper proposes a model approximation algorithm for continuous states and actions that integrates case-based reasoning (CBR) and Hidden Markov Models (HMM) to generalize from a small set of state instances. The paper demonstrates that the performance of the learned model is close to that of the system dynamics it approximates, where performance is measured in terms of sampling error.



The Ninth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE): A Report

AI Magazine

The Ninth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE) was held October 14–18, 2013, at Northeastern University in Boston, Massachusetts. The mission of the AIIDE conference is to provide a forum for researchers and game developers to discuss ways that AI can enhance games and other forms of interactive entertainment. In addition to presentations on adapting standard AI techniques such as search, planning and machine learning for use within games, key topic areas include creating realistic autonomous characters, interactive narrative, procedural content generation, and integrating AI into game design and production tools.


The Ninth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE): A Report

AI Magazine

The Ninth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE) was held October 14–18, 2013, at Northeastern University in Boston, Massachusetts. The mission of the AIIDE conference is to provide a forum for researchers and game developers to discuss ways that AI can enhance games and other forms of interactive entertainment. In addition to presentations on adapting standard AI techniques such as search, planning and machine learning for use within games, key topic areas include creating realistic autonomous characters, interactive narrative, procedural content generation, and integrating AI into game design and production tools.



The AAAI-13 Conference Workshops

AI Magazine

The AAAI-13 Workshop Program, a part of the 27th AAAI Conference on Artificial Intelligence, was held Sunday and Monday, July 14–15, 2013 at the Hyatt Regency Bellevue Hotel in Bellevue, Washington, USA. The program included 12 workshops covering a wide range of topics in artificial intelligence, including Activity Context-Aware System Architectures (WS-13-05); Artificial Intelligence and Robotics Methods in Computational Biology (WS-13-06); Combining Constraint Solving with Mining and Learning (WS-13-07); Computer Poker and Imperfect Information (WS-13-08); Expanding the Boundaries of Health Informatics Using Artificial Intelligence (WS-13-09); Intelligent Robotic Systems (WS-13-10); Intelligent Techniques for Web Personalization and Recommendation (WS-13-11); Learning Rich Representations from Low-Level Sensors (WS-13-12); Plan, Activity, and Intent Recognition (WS-13-13); Space, Time, and Ambient Intelligence (WS-13-14); Trading Agent Design and Analysis (WS-13-15); and Statistical Relational Artificial Intelligence (WS-13-16).


Integrating Learner Help Requests Using a POMDP in an Adaptive Training System

AAAI Conferences

This paper describes the development and empirical testing of an intelligent tutoring system (ITS) with two emerging methodologies: (1) a partially observable Markov decision process (POMDP) for representing the learner model and (2) inquiry modeling, which informs the learner model with questions learners ask during instruction. POMDPs have been successfully applied to non-ITS domains but, until recently, have seemed intractable for large-scale intelligent tutoring challenges. New, ITS-specific representations leverage common regularities in intelligent tutoring to make a POMDP practical as a learner model. Inquiry modeling is a novel paradigm for informing learner models by observing rich features of learners’ help requests such as categorical content, context, and timing. The experiment described in this paper demonstrates that inquiry modeling and planning with POMDPs can yield significant and substantive learning improvements in a realistic, scenario-based training task.


Reports of the AAAI 2011 Conference Workshops

AI Magazine

The AAAI-11 workshop program was held Sunday and Monday, August 7–18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages; Analyzing Microtext; Applied Adversarial Reasoning and Risk Modeling; Artificial Intelligence and Smarter Living: The Conquest of Complexity; AI for Data Center Management and Cloud Computing; Automated Action Planning for Autonomous Mobile Robots; Computational Models of Natural Argument; Generalized Planning; Human Computation; Human-Robot Interaction in Elder Care; Interactive Decision Theory and Game Theory; Language-Action Tools for Cognitive Artificial Agents: Integrating Vision, Action and Language; Lifelong Learning; Plan, Activity, and Intent Recognition; and Scalable Integration of Analytics and Visualization. This article presents short summaries of those events.


Reports of the AAAI 2011 Conference Workshops

AI Magazine

The AAAI-11 workshop program was held Sunday and Monday, August 7–18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages; Analyzing Microtext; Applied Adversarial Reasoning and Risk Modeling; Artificial Intelligence and Smarter Living: The Conquest of Complexity; AI for Data Center Management and Cloud Computing; Automated Action Planning for Autonomous Mobile Robots; Computational Models of Natural Argument; Generalized Planning; Human Computation; Human-Robot Interaction in Elder Care; Interactive Decision Theory and Game Theory; Language-Action Tools for Cognitive Artificial Agents: Integrating Vision, Action and Language; Lifelong Learning; Plan, Activity, and Intent Recognition; and Scalable Integration of Analytics and Visualization. This article presents short summaries of those events.