Sugiyama, Masashi
Domain Adaptation and Entanglement: an Optimal Transport Perspective
Koç, Okan, Soen, Alexander, Chiang, Chao-Kai, Sugiyama, Masashi
Current machine learning systems are brittle in the face of distribution shifts (DS), where the target distribution that the system is tested on differs from the source distribution used to train the system. This problem of robustness to DS has been studied extensively in the field of domain adaptation. For deep neural networks, a popular framework for unsupervised domain adaptation (UDA) is domain matching, in which algorithms try to align the marginal distributions in the feature or output space. The current theoretical understanding of these methods, however, is limited and existing theoretical results are not precise enough to characterize their performance in practice. In this paper, we derive new bounds based on optimal transport that analyze the UDA problem. Our new bounds include a term which we dub as \emph{entanglement}, consisting of an expectation of Wasserstein distance between conditionals with respect to changing data distributions. Analysis of the entanglement term provides a novel perspective on the unoptimizable aspects of UDA. In various experiments with multiple models across several DS scenarios, we show that this term can be used to explain the varying performance of UDA algorithms.
Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation
Xu, Jie, Zhao, Na, Niu, Gang, Sugiyama, Masashi, Zhu, Xiaofeng
Recently, multi-view learning (MVL) has garnered significant attention due to its ability to fuse discriminative information from multiple views. However, real-world multi-view datasets are often heterogeneous and imperfect, which usually makes MVL methods designed for specific combinations of views lack application potential and limits their effectiveness. To address this issue, we propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment. Specifically, we introduce a simple yet effective multi-view transformer fusion network where we transform heterogeneous multi-view data into homogeneous word embeddings, and then integrate multiple views by the sample-level attention mechanism to obtain a fused representation. Furthermore, we propose a simulated perturbation based multi-view contrastive learning framework that dynamically generates the noise and unusable perturbations for simulating imperfect data conditions. The simulated noisy and unusable data obtain two distinct fused representations, and we utilize contrastive learning to align them for learning discriminative and robust representations. Our RML is self-supervised and can also be applied for downstream tasks as a regularization. In experiments, we employ it in unsupervised multi-view clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval. Extensive comparison experiments and ablation studies validate the effectiveness of RML.
Accurate Forgetting for Heterogeneous Federated Continual Learning
Wuerkaixi, Abudukelimu, Cui, Sen, Zhang, Jingfeng, Yan, Kunda, Han, Bo, Niu, Gang, Fang, Lei, Zhang, Changshui, Sugiyama, Masashi
Recent years have witnessed a burgeoning interest in federated learning (FL). However, the contexts in which clients engage in sequential learning remain under-explored. Bridging FL and continual learning (CL) gives rise to a challenging practical problem: federated continual learning (FCL). Existing research in FCL primarily focuses on mitigating the catastrophic forgetting issue of continual learning while collaborating with other clients. We argue that the forgetting phenomena are not invariably detrimental. In this paper, we consider a more practical and challenging FCL setting characterized by potentially unrelated or even antagonistic data/tasks across different clients. In the FL scenario, statistical heterogeneity and data noise among clients may exhibit spurious correlations which result in biased feature learning. While existing CL strategies focus on a complete utilization of previous knowledge, we found that forgetting biased information is beneficial in our study. Therefore, we propose a new concept accurate forgetting (AF) and develop a novel generative-replay method~\method~which selectively utilizes previous knowledge in federated networks. We employ a probabilistic framework based on a normalizing flow model to quantify the credibility of previous knowledge. Comprehensive experiments affirm the superiority of our method over baselines.
Realistic Evaluation of Deep Partial-Label Learning Algorithms
Wang, Wei, Wu, Dong-Dong, Wang, Jindong, Niu, Gang, Zhang, Min-Ling, Sugiyama, Masashi
Partial-label learning (PLL) is a weakly supervised learning problem in which each example is associated with multiple candidate labels and only one is the true label. In recent years, many deep PLL algorithms have been developed to improve model performance. However, we find that some early developed algorithms are often underestimated and can outperform many later algorithms with complicated designs. In this paper, we delve into the empirical perspective of PLL and identify several critical but previously overlooked issues. First, model selection for PLL is non-trivial, but has never been systematically studied. Second, the experimental settings are highly inconsistent, making it difficult to evaluate the effectiveness of the algorithms. Third, there is a lack of real-world image datasets that can be compatible with modern network architectures. Based on these findings, we propose PLENCH, the first Partial-Label learning bENCHmark to systematically compare state-of-the-art deep PLL algorithms. We investigate the model selection problem for PLL for the first time, and propose novel model selection criteria with theoretical guarantees. We also create Partial-Label CIFAR-10 (PLCIFAR10), an image dataset of human-annotated partial labels collected from Amazon Mechanical Turk, to provide a testbed for evaluating the performance of PLL algorithms in more realistic scenarios. Researchers can quickly and conveniently perform a comprehensive and fair evaluation and verify the effectiveness of newly developed algorithms based on PLENCH. We hope that PLENCH will facilitate standardized, fair, and practical evaluation of PLL algorithms in the future.
Safety at Scale: A Comprehensive Survey of Large Model Safety
Ma, Xingjun, Gao, Yifeng, Wang, Yixu, Wang, Ruofan, Wang, Xin, Sun, Ye, Ding, Yifan, Xu, Hengyuan, Chen, Yunhao, Zhao, Yunhan, Huang, Hanxun, Li, Yige, Zhang, Jiaming, Zheng, Xiang, Bai, Yang, Wu, Zuxuan, Qiu, Xipeng, Zhang, Jingfeng, Li, Yiming, Sun, Jun, Wang, Cong, Gu, Jindong, Wu, Baoyuan, Chen, Siheng, Zhang, Tianwei, Liu, Yang, Gong, Mingming, Liu, Tongliang, Pan, Shirui, Xie, Cihang, Pang, Tianyu, Dong, Yinpeng, Jia, Ruoxi, Zhang, Yang, Ma, Shiqing, Zhang, Xiangyu, Gong, Neil, Xiao, Chaowei, Erfani, Sarah, Li, Bo, Sugiyama, Masashi, Tao, Dacheng, Bailey, James, Jiang, Yu-Gang
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
Weak-to-Strong Diffusion with Reflection
Bai, Lichen, Sugiyama, Masashi, Xie, Zeke
The goal of diffusion generative models is to align the learned distribution with the real data distribution through gradient score matching. However, inherent limitations in training data quality, modeling strategies, and architectural design lead to inevitable gap between generated outputs and real data. To reduce this gap, we propose Weak-to-Strong Diffusion (W2SD), a novel framework that utilizes the estimated difference between existing weak and strong models (i.e., weak-to-strong difference) to approximate the gap between an ideal model and a strong model. By employing a reflective operation that alternates between denoising and inversion with weak-to-strong difference, we theoretically understand that W2SD steers latent variables along sampling trajectories toward regions of the real data distribution. W2SD is highly flexible and broadly applicable, enabling diverse improvements through the strategic selection of weak-to-strong model pairs (e.g., DreamShaper vs. SD1.5, good experts vs. bad experts in MoE). Extensive experiments demonstrate that W2SD significantly improves human preference, aesthetic quality, and prompt adherence, achieving SOTA performance across various modalities (e.g., image, video), architectures (e.g., UNet-based, DiT-based, MoE), and benchmarks. For example, Juggernaut-XL with W2SD can improve with the HPSv2 winning rate up to 90% over the original results. Moreover, the performance gains achieved by W2SD markedly outweigh its additional computational overhead, while the cumulative improvements from different weak-to-strong difference further solidify its practical utility and deployability.
Label Distribution Learning with Biased Annotations by Learning Multi-Label Representation
Kou, Zhiqiang, Qin, Si, Wang, Hailin, Xie, Mingkun, Chen, Shuo, Jia, Yuheng, Liu, Tongliang, Sugiyama, Masashi, Geng, Xin
Multi-label learning (MLL) has gained attention for its ability to represent real-world data. Label Distribution Learning (LDL), an extension of MLL to learning from label distributions, faces challenges in collecting accurate label distributions. To address the issue of biased annotations, based on the low-rank assumption, existing works recover true distributions from biased observations by exploring the label correlations. However, recent evidence shows that the label distribution tends to be full-rank, and naive apply of low-rank approximation on biased observation leads to inaccurate recovery and performance degradation. In this paper, we address the LDL with biased annotations problem from a novel perspective, where we first degenerate the soft label distribution into a hard multi-hot label and then recover the true label information for each instance. This idea stems from an insight that assigning hard multi-hot labels is often easier than assigning a soft label distribution, and it shows stronger immunity to noise disturbances, leading to smaller label bias. Moreover, assuming that the multi-label space for predicting label distributions is low-rank offers a more reasonable approach to capturing label correlations. Theoretical analysis and experiments confirm the effectiveness and robustness of our method on real-world datasets.
Action-Agnostic Point-Level Supervision for Temporal Action Detection
Yoshida, Shuhei M., Shibata, Takashi, Terao, Makoto, Okatani, Takayuki, Sugiyama, Masashi
We propose action-agnostic point-level (AAPL) supervision for temporal action detection to achieve accurate action instance detection with a lightly annotated dataset. In the proposed scheme, a small portion of video frames is sampled in an unsupervised manner and presented to human annotators, who then label the frames with action categories. Unlike point-level supervision, which requires annotators to search for every action instance in an untrimmed video, frames to annotate are selected without human intervention in AAPL supervision. We also propose a detection model and learning method to effectively utilize the AAPL labels. Extensive experiments on the variety of datasets (THUMOS '14, FineAction, GTEA, BEOID, and ActivityNet 1.3) demonstrate that the proposed approach is competitive with or outperforms prior methods for video-level and point-level supervision in terms of the trade-off between the annotation cost and detection performance.
Parallel simulation for sampling under isoperimetry and score-based diffusion models
Zhou, Huanjian, Sugiyama, Masashi
In recent years, there has been a surge of interest in proving discretization bounds for sampling under isoperimetry and for diffusion models. As data size grows, reducing the iteration cost becomes an important goal. Inspired by the great success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks. Rigorous theoretical analysis reveals that our algorithm achieves better dependence on dimension $d$ than prior works in iteration complexity (i.e., reduced from $\widetilde{O}(\log^2 d)$ to $\widetilde{O}(\log d)$), which is even optimal for sampling under isoperimetry with specific iteration complexity. Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
Vision-Language Model Fine-Tuning via Simple Parameter-Efficient Modification
Li, Ming, Zhong, Jike, Li, Chenxin, Li, Liuzhuozheng, Lin, Nie, Sugiyama, Masashi
Recent advances in fine-tuning Vision-Language Models (VLMs) have witnessed the success of prompt tuning and adapter tuning, while the classic model fine-tuning on inherent parameters seems to be overlooked. It is believed that fine-tuning the parameters of VLMs with few-shot samples corrupts the pre-trained knowledge since fine-tuning the CLIP model even degrades performance. In this paper, we revisit this viewpoint, and propose a new perspective: fine-tuning the specific parameters instead of all will uncover the power of classic model fine-tuning on VLMs. Through our meticulous study, we propose ClipFit, a simple yet effective method to fine-tune CLIP without introducing any overhead of extra parameters. We demonstrate that by only fine-tuning the specific bias terms and normalization layers, ClipFit can improve the performance of zero-shot CLIP by 7.27\% average harmonic mean accuracy. Lastly, to understand how fine-tuning in CLIPFit affects the pre-trained models, we conducted extensive experimental analyses w.r.t. changes in internal parameters and representations. We found that low-level text bias layers and the first layer normalization layer change much more than other layers. The code is available at \url{https://github.com/minglllli/CLIPFit}.