Sugiyama, Hiroaki
Training Dialogue Systems by AI Feedback for Improving Overall Dialogue Impression
Yoshida, Kai, Mizukami, Masahiro, Kawano, Seiya, Kruengkrai, Canasai, Sugiyama, Hiroaki, Yoshino, Koichiro
To improve user engagement during conversations with dialogue systems, we must improve individual dialogue responses and dialogue impressions such as consistency, personality, and empathy throughout the entire dialogue. While such dialogue systems have been developing rapidly with the help of large language models (LLMs), reinforcement learning from AI feedback (RLAIF) has attracted attention to align LLM-based dialogue models for such dialogue impressions. In RLAIF, a reward model based on another LLM is used to create a training signal for an LLM-based dialogue model using zero-shot/few-shot prompting techniques. However, evaluating an entire dialogue only by prompting LLMs is challenging. In this study, the supervised fine-tuning (SFT) of LLMs prepared reward models corresponding to 12 metrics related to the impression of the entire dialogue for evaluating dialogue responses. We tuned our dialogue models using the reward model signals as feedback to improve the impression of the system. The results of automatic and human evaluations showed that tuning the dialogue model using our reward model corresponding to dialogue impression improved the evaluation of individual metrics and the naturalness of the dialogue response.
ToMATO: Verbalizing the Mental States of Role-Playing LLMs for Benchmarking Theory of Mind
Shinoda, Kazutoshi, Hojo, Nobukatsu, Nishida, Kyosuke, Mizuno, Saki, Suzuki, Keita, Masumura, Ryo, Sugiyama, Hiroaki, Saito, Kuniko
Existing Theory of Mind (ToM) benchmarks diverge from real-world scenarios in three aspects: 1) they assess a limited range of mental states such as beliefs, 2) false beliefs are not comprehensively explored, and 3) the diverse personality traits of characters are overlooked. To address these challenges, we introduce ToMATO, a new ToM benchmark formulated as multiple-choice QA over conversations. ToMATO is generated via LLM-LLM conversations featuring information asymmetry. By employing a prompting method that requires role-playing LLMs to verbalize their thoughts before each utterance, we capture both first- and second-order mental states across five categories: belief, intention, desire, emotion, and knowledge. These verbalized thoughts serve as answers to questions designed to assess the mental states of characters within conversations. Furthermore, the information asymmetry introduced by hiding thoughts from others induces the generation of false beliefs about various mental states. Assigning distinct personality traits to LLMs further diversifies both utterances and thoughts. ToMATO consists of 5.4k questions, 753 conversations, and 15 personality trait patterns. Our analysis shows that this dataset construction approach frequently generates false beliefs due to the information asymmetry between role-playing LLMs, and effectively reflects diverse personalities. We evaluate nine LLMs on ToMATO and find that even GPT-4o mini lags behind human performance, especially in understanding false beliefs, and lacks robustness to various personality traits.
LLM-jp: A Cross-organizational Project for the Research and Development of Fully Open Japanese LLMs
LLM-jp, null, :, null, Aizawa, Akiko, Aramaki, Eiji, Chen, Bowen, Cheng, Fei, Deguchi, Hiroyuki, Enomoto, Rintaro, Fujii, Kazuki, Fukumoto, Kensuke, Fukushima, Takuya, Han, Namgi, Harada, Yuto, Hashimoto, Chikara, Hiraoka, Tatsuya, Hisada, Shohei, Hosokawa, Sosuke, Jie, Lu, Kamata, Keisuke, Kanazawa, Teruhito, Kanezashi, Hiroki, Kataoka, Hiroshi, Katsumata, Satoru, Kawahara, Daisuke, Kawano, Seiya, Keyaki, Atsushi, Kiryu, Keisuke, Kiyomaru, Hirokazu, Kodama, Takashi, Kubo, Takahiro, Kuga, Yohei, Kumon, Ryoma, Kurita, Shuhei, Kurohashi, Sadao, Li, Conglong, Maekawa, Taiki, Matsuda, Hiroshi, Miyao, Yusuke, Mizuki, Kentaro, Mizuki, Sakae, Murawaki, Yugo, Nakamura, Ryo, Nakamura, Taishi, Nakayama, Kouta, Nakazato, Tomoka, Niitsuma, Takuro, Nishitoba, Jiro, Oda, Yusuke, Ogawa, Hayato, Okamoto, Takumi, Okazaki, Naoaki, Oseki, Yohei, Ozaki, Shintaro, Ryu, Koki, Rzepka, Rafal, Sakaguchi, Keisuke, Sasaki, Shota, Sekine, Satoshi, Suda, Kohei, Sugawara, Saku, Sugiura, Issa, Sugiyama, Hiroaki, Suzuki, Hisami, Suzuki, Jun, Suzumura, Toyotaro, Tachibana, Kensuke, Takagi, Yu, Takami, Kyosuke, Takeda, Koichi, Takeshita, Masashi, Tanaka, Masahiro, Taura, Kenjiro, Tolmachev, Arseny, Ueda, Nobuhiro, Wan, Zhen, Yada, Shuntaro, Yahata, Sakiko, Yamamoto, Yuya, Yamauchi, Yusuke, Yanaka, Hitomi, Yokota, Rio, Yoshino, Koichiro
This paper introduces LLM-jp, a cross-organizational project for the research and development of Japanese large language models (LLMs). LLM-jp aims to develop open-source and strong Japanese LLMs, and as of this writing, more than 1,500 participants from academia and industry are working together for this purpose. This paper presents the background of the establishment of LLM-jp, summaries of its activities, and technical reports on the LLMs developed by LLM-jp.
Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems
Sato, Shiki, Kishinami, Yosuke, Sugiyama, Hiroaki, Akama, Reina, Tokuhisa, Ryoko, Suzuki, Jun
Automation of dialogue system evaluation is a driving force for the efficient development of dialogue systems. This paper introduces the bipartite-play method, a dialogue collection method for automating dialogue system evaluation. It addresses the limitations of existing dialogue collection methods: (i) inability to compare with systems that are not publicly available, and (ii) vulnerability to cheating by intentionally selecting systems to be compared. Experimental results show that the automatic evaluation using the bipartite-play method mitigates these two drawbacks and correlates as strongly with human subjectivity as existing methods.
Spoken Dialogue Strategy Focusing on Asymmetric Communication with Android Robots
Kawakubo, Daisuke, Ishii, Hitoshi, Okazawa, Riku, Nishizawa, Shunta, Hatakeyama, Haruki, Sugiyama, Hiroaki, Shuzo, Masaki, Maeda, Eisaku
Humans are easily conscious of small differences in an android robot's (AR's) behaviors and utterances, resulting in treating the AR as not-human, while ARs treat us as humans. Thus, there exists asymmetric communication between ARs and humans. In our system at Dialogue Robot Competition 2022, this asymmetry was a considerable research target in our dialogue strategy. For example, tricky phrases such as questions related to personal matters and forceful requests for agreement were experimentally used in AR's utterances. We assumed that these AR phrases would have a reasonable chance of success, although humans would likely hesitate to use the phrases. Additionally, during a five-minute dialogue, our AR's character, such as its voice tones and sentence expressions, changed from mechanical to human-like type in order to pretend to tailor to customers. The characteristics of the AR developed by our team, DSML-TDU, are introduced in this paper.
Empirical Analysis of Training Strategies of Transformer-based Japanese Chit-chat Systems
Sugiyama, Hiroaki, Mizukami, Masahiro, Arimoto, Tsunehiro, Narimatsu, Hiromi, Chiba, Yuya, Nakajima, Hideharu, Meguro, Toyomi
In recent years, several high-performance conversational systems have been proposed based on the Transformer encoder-decoder model. Although previous studies analyzed the effects of the model parameters and the decoding method on subjective dialogue evaluations with overall metrics, they did not analyze how the differences of fine-tuning datasets affect on user's detailed impression. In addition, the Transformer-based approach has only been verified for English, not for such languages with large inter-language distances as Japanese. In this study, we develop large-scale Transformer-based Japanese dialogue models and Japanese chit-chat datasets to examine the effectiveness of the Transformer-based approach for building chit-chat dialogue systems. We evaluated and analyzed the impressions of human dialogues in different fine-tuning datasets, model parameters, and the use of additional information.
Proactive Conversation between Multiple Robots to Improve the Sense of Human–Robot Conversation
Yoshikawa, Yuicho (Osaka University) | Iio, Takamasa (Osaka University) | Arimoto, Tsunehiro (Osaka University) | Sugiyama, Hiroaki (NTT Communication Science Laboratories) | Ishiguro, Hiroshi (Osaka University)
In this position paper, we address potential merits of a novel conversational system using the group form of mul-tiple robots that provides users with a stronger sense of conversation, with which a person can feel as if he or she is participating in a conversation. The merits can be per-formed by implementing the group behavior of multiple robots so that appropriate turn-taking is inserted to en-hance the sense of conversation against potential conver-sational break-down. Through introducing the preliminary analysis of three experiments, how the sense of conversa-tion can be enhanced and evaluated is exemplified and its limitations and potentials are argued.