Goto

Collaborating Authors

 Sudalairaj, Shivchander


A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code, videos, and further information available at https://probabilistic-inference-scaling.github.io.


Unveiling the Secret Recipe: A Guide For Supervised Fine-Tuning Small LLMs

arXiv.org Machine Learning

The rise of large language models (LLMs) has created a significant disparity: industrial research labs with their computational resources, expert teams, and advanced infrastructures, can effectively fine-tune LLMs, while individual developers and small organizations face barriers due to limited resources. In this paper, we aim to bridge this gap by presenting a comprehensive study on supervised fine-tuning of LLMs using instruction-tuning datasets spanning diverse knowledge domains and skills. We focus on small-sized LLMs (3B to 7B parameters) for their cost-efficiency and accessibility. We explore various training configurations and strategies across four open-source pre-trained models. We provide detailed documentation of these configurations, revealing findings that challenge several common training practices, including hyperparameter recommendations from TULU and phased training recommended by Orca. Key insights from our work include: (i) larger batch sizes paired with lower learning rates lead to improved model performance on benchmarks such as MMLU, MTBench, and Open LLM Leaderboard; (ii) early-stage training dynamics, such as lower gradient norms and higher loss values, are strong indicators of better final model performance, enabling early termination of sub-optimal runs and significant computational savings; (iii) through a thorough exploration of hyperparameters like warmup steps and learning rate schedules, we provide guidance for practitioners and find that certain simplifications do not compromise performance; and (iv) we observed no significant difference in performance between phased and stacked training strategies, but stacked training is simpler and more sample efficient. With these findings holding robustly across datasets and models, we hope this study serves as a guide for practitioners fine-tuning small LLMs and promotes a more inclusive environment for LLM research.


CDR: Customizable Density Ratios of Strong-over-weak LLMs for Preference Annotation

arXiv.org Artificial Intelligence

Preference tuning of large language models (LLMs) relies on high-quality human preference data, which is often expensive and time-consuming to gather. While existing methods can use trained reward models or proprietary model as judges for preference annotation, they have notable drawbacks: training reward models remain dependent on initial human data, and using proprietary model imposes license restrictions that inhibits commercial usage. In this paper, we introduce customized density ratio (CDR), a training-free and highly effective method that leverages off-the-shelf LLMs for preference data annotation. Our approach uses the log-density ratio between a better-aligned LLM and a less aligned LLM as a reward signal. We explores 221 different LLMs pairs and empirically demonstrate that increasing the performance gap between paired LLMs correlates with better reward generalization. Furthermore, we show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas. In our experiment using density ratio from a pair of Mistral-7B models, CDR achieves a RewardBench score of 82.6, outperforming the best trained reward functions from same model class and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. We use CDR to annotate an on-policy preference dataset with which we preference tune Llama-3-8B-Instruct with SimPO. Using reward signals from two relatively weak models, our approach pushes Llama-3-8B to achieve a 37.4% (+15.1%) Preference tuning has advanced the capabilities of large language models (LLMs), but this progress relies on high-quality human preference data which is both costly and time-consuming to gather. Cutting-edge models (e.g., ChatGPT, GPT-4, Claude-3) are aligned with curated, quality-controlled human preference data, typically provided by specialized companies. AI-feedback solutions are emerging as an alternative--either through a trained reward model (Dong et al., 2024) or proprietary LLM-as-a-judge (Cui et al., 2023). However, training reward models still rely on costly initial human preference data, and proprietary LLM-as-a-judge approaches introduce licensing restrictions that generally prevent commercial use.


LAB: Large-Scale Alignment for ChatBots

arXiv.org Artificial Intelligence

This work introduces LAB (Large-scale Alignment for chatBots), a novel methodology designed to overcome the scalability challenges in the instruction-tuning phase of large language model (LLM) training. Leveraging a taxonomy-guided synthetic data generation process and a multi-phase tuning framework, LAB significantly reduces reliance on expensive human annotations and proprietary models like GPT-4. We demonstrate that LAB-trained models can achieve competitive performance across several benchmarks compared to models trained with traditional human-annotated or GPT-4 generated synthetic data. Large language models (LLMs) have achieved remarkable levels of success in various natural language processing (NLP) applications, including question-answering, entity extraction, and summarization . This has been made possible, in large part, by the introduction of the transformer architecture, which can leverage large amounts of unlabeled, unstructured data, enabling the scaling of LLMs to billions, or even trillions of parameters. LLMs are typically trained in phases: a self-supervised pre-training phase, followed by supervised alignment tuning phases.


Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries

arXiv.org Artificial Intelligence

Deep ensembles (DE) have been successful in improving model performance by learning diverse members via the stochasticity of random initialization. While recent works have attempted to promote further diversity in DE via hyperparameters or regularizing loss functions, these methods primarily still rely on a stochastic approach to explore the hypothesis space. In this work, we present Multi-Symmetry Ensembles (MSE), a framework for constructing diverse ensembles by capturing the multiplicity of hypotheses along symmetry axes, which explore the hypothesis space beyond stochastic perturbations of model weights and hyperparameters. We leverage recent advances in contrastive representation learning to create models that separately capture opposing hypotheses of invariant and equivariant functional classes and present a simple ensembling approach to efficiently combine appropriate hypotheses for a given task. We show that MSE effectively captures the multiplicity of conflicting hypotheses that is often required in large, diverse datasets like ImageNet. As a result of their inherent diversity, MSE improves classification performance, uncertainty quantification, and generalization across a series of transfer tasks.


Constructive Assimilation: Boosting Contrastive Learning Performance through View Generation Strategies

arXiv.org Artificial Intelligence

Transformations based on domain expertise (expert transformations), such as random-resized-crop and color-jitter, have proven critical to the success of contrastive learning techniques such as SimCLR. Recently, several attempts have been made to replace such domain-specific, human-designed transformations with generated views that are learned. However for imagery data, so far none of these view-generation methods has been able to outperform expert transformations. In this work, we tackle a different question: instead of replacing expert transformations with generated views, can we constructively assimilate generated views with expert transformations? We answer this question in the affirmative and propose a view generation method and a simple, effective assimilation method that together improve the state-of-the-art by up to ~3.6% on three different datasets. Importantly, we conduct a detailed empirical study that systematically analyzes a range of view generation and assimilation methods and provides a holistic picture of the efficacy of learned views in contrastive representation learning.