Goto

Collaborating Authors

 Su, Wenbo


A Comprehensive Survey on Long Context Language Modeling

arXiv.org Artificial Intelligence

Efficient processing of long contexts has been a persistent pursuit in Natural Language Processing. With the growing number of long documents, dialogues, and other textual data, it is important to develop Long Context Language Models (LCLMs) that can process and analyze extensive inputs in an effective and efficient way. In this paper, we present a comprehensive survey on recent advances in long-context modeling for large language models. Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively. For the first aspect, we discuss data strategies, architectural designs, and workflow approaches oriented with long context processing. For the second aspect, we provide a detailed examination of the infrastructure required for LCLM training and inference. For the third aspect, we present evaluation paradigms for long-context comprehension and long-form generation, as well as behavioral analysis and mechanism interpretability of LCLMs. Beyond these three key aspects, we thoroughly explore the diverse application scenarios where existing LCLMs have been deployed and outline promising future development directions. This survey provides an up-to-date review of the literature on long-context LLMs, which we wish to serve as a valuable resource for both researchers and engineers. An associated GitHub repository collecting the latest papers and repos is available at: \href{https://github.com/LCLM-Horizon/A-Comprehensive-Survey-For-Long-Context-Language-Modeling}{\color[RGB]{175,36,67}{LCLM-Horizon}}.


ECKGBench: Benchmarking Large Language Models in E-commerce Leveraging Knowledge Graph

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated their capabilities across various NLP tasks. Their potential in e-commerce is also substantial, evidenced by practical implementations such as platform search, personalized recommendations, and customer service. One primary concern associated with LLMs is their factuality (e.g., hallucination), which is urgent in e-commerce due to its significant impact on user experience and revenue. Despite some methods proposed to evaluate LLMs' factuality, issues such as lack of reliability, high consumption, and lack of domain expertise leave a gap between effective assessment in e-commerce. To bridge the evaluation gap, we propose ECKGBench, a dataset specifically designed to evaluate the capacities of LLMs in e-commerce knowledge. Specifically, we adopt a standardized workflow to automatically generate questions based on a large-scale knowledge graph, guaranteeing sufficient reliability. We employ the simple question-answering paradigm, substantially improving the evaluation efficiency by the least input and output tokens. Furthermore, we inject abundant e-commerce expertise in each evaluation stage, including human annotation, prompt design, negative sampling, and verification. Besides, we explore the LLMs' knowledge boundaries in e-commerce from a novel perspective. Through comprehensive evaluations of several advanced LLMs on ECKGBench, we provide meticulous analysis and insights into leveraging LLMs for e-commerce.


Deconstructing Long Chain-of-Thought: A Structured Reasoning Optimization Framework for Long CoT Distillation

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have demonstrated remarkable reasoning capabilities through long chain-of-thought (CoT) reasoning. The R1 distillation scheme has emerged as a promising approach for training cost-effective models with enhanced reasoning abilities. However, the underlying mechanisms driving its effectiveness remain unclear. This study examines the universality of distillation data and identifies key components that enable the efficient transfer of long-chain reasoning capabilities in LLM distillation. Our findings reveal that the effectiveness of long CoT reasoning distillation from teacher models like Qwen-QwQ degrades significantly on nonhomologous models, challenging the assumed universality of current distillation methods. To gain deeper insights into the structure and patterns of long CoT reasoning, we propose DLCoT (Deconstructing Long Chain-of-Thought), a distillation data enhancement framework. DLCoT consists of three key steps: (1) data segmentation to decompose complex long CoT structures, (2) simplification by eliminating unsolvable and redundant solutions, and (3) optimization of intermediate error states. Our approach significantly improves model performance and token efficiency, facilitating the development of high-performance LLMs.


SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.


AIR: Complex Instruction Generation via Automatic Iterative Refinement

arXiv.org Artificial Intelligence

With the development of large language models, their ability to follow simple instructions has significantly improved. However, adhering to complex instructions remains a major challenge. Current approaches to generating complex instructions are often irrelevant to the current instruction requirements or suffer from limited scalability and diversity. Moreover, methods such as back-translation, while effective for simple instruction generation, fail to leverage the rich contents and structures in large web corpora. In this paper, we propose a novel automatic iterative refinement framework to generate complex instructions with constraints, which not only better reflects the requirements of real scenarios but also significantly enhances LLMs' ability to follow complex instructions. The AIR framework consists of two stages: (1)Generate an initial instruction from a document; (2)Iteratively refine instructions with LLM-as-judge guidance by comparing the model's output with the document to incorporate valuable constraints. Finally, we construct the AIR-10K dataset with 10K complex instructions and demonstrate that instructions generated with our approach significantly improve the model's ability to follow complex instructions, outperforming existing methods for instruction generation.


Can Large Language Models Detect Errors in Long Chain-of-Thought Reasoning?

arXiv.org Artificial Intelligence

Recently, o1-like models have drawn significant attention, where these models produce the long Chain-of-Thought (CoT) reasoning steps to improve the reasoning abilities of existing Large Language Models (LLMs). In this paper, to understand the qualities of these long CoTs and measure the critique abilities of existing LLMs on these long CoTs, we introduce the DeltaBench, including the generated long CoTs from different o1-like models (e.g., QwQ, DeepSeek-R1) for different reasoning tasks (e.g., Math, Code, General Reasoning), to measure the ability to detect errors in long CoT reasoning. Based on DeltaBench, we first perform fine-grained analysis of the generated long CoTs to discover the effectiveness and efficiency of different o1-like models. Then, we conduct extensive evaluations of existing process reward models (PRMs) and critic models to detect the errors of each annotated process, which aims to investigate the boundaries and limitations of existing PRMs and critic models. Finally, we hope that DeltaBench could guide developers to better understand the long CoT reasoning abilities of their models.


ChineseEcomQA: A Scalable E-commerce Concept Evaluation Benchmark for Large Language Models

arXiv.org Artificial Intelligence

With the increasing use of Large Language Models (LLMs) in fields such as e-commerce, domain-specific concept evaluation benchmarks are crucial for assessing their domain capabilities. Existing LLMs may generate factually incorrect information within the complex e-commerce applications. Therefore, it is necessary to build an e-commerce concept benchmark. Existing benchmarks encounter two primary challenges: (1) handle the heterogeneous and diverse nature of tasks, (2) distinguish between generality and specificity within the e-commerce field. To address these problems, we propose \textbf{ChineseEcomQA}, a scalable question-answering benchmark focused on fundamental e-commerce concepts. ChineseEcomQA is built on three core characteristics: \textbf{Focus on Fundamental Concept}, \textbf{E-commerce Generality} and \textbf{E-commerce Expertise}. Fundamental concepts are designed to be applicable across a diverse array of e-commerce tasks, thus addressing the challenge of heterogeneity and diversity. Additionally, by carefully balancing generality and specificity, ChineseEcomQA effectively differentiates between broad e-commerce concepts, allowing for precise validation of domain capabilities. We achieve this through a scalable benchmark construction process that combines LLM validation, Retrieval-Augmented Generation (RAG) validation, and rigorous manual annotation. Based on ChineseEcomQA, we conduct extensive evaluations on mainstream LLMs and provide some valuable insights. We hope that ChineseEcomQA could guide future domain-specific evaluations, and facilitate broader LLM adoption in e-commerce applications.


"See the World, Discover Knowledge": A Chinese Factuality Evaluation for Large Vision Language Models

arXiv.org Artificial Intelligence

The evaluation of factual accuracy in large vision language models (LVLMs) has lagged behind their rapid development, making it challenging to fully reflect these models' knowledge capacity and reliability. In this paper, we introduce the first factuality-based visual question-answering benchmark in Chinese, named ChineseSimpleVQA, aimed at assessing the visual factuality of LVLMs across 8 major topics and 56 subtopics. The key features of this benchmark include a focus on the Chinese language, diverse knowledge types, a multi-hop question construction, high-quality data, static consistency, and easy-to-evaluate through short answers. Moreover, we contribute a rigorous data construction pipeline and decouple the visual factuality into two parts: seeing the world (i.e., object recognition) and discovering knowledge. This decoupling allows us to analyze the capability boundaries and execution mechanisms of LVLMs. Subsequently, we evaluate 34 advanced open-source and closed-source models, revealing critical performance gaps within this field.


Equilibrate RLHF: Towards Balancing Helpfulness-Safety Trade-off in Large Language Models

arXiv.org Artificial Intelligence

Fine-tuning large language models (LLMs) based on human preferences, commonly achieved through reinforcement learning from human feedback (RLHF), has been effective in improving their performance. However, maintaining LLM safety throughout the fine-tuning process remains a significant challenge, as resolving conflicts between safety and helpfulness can be non-trivial. Typically, the safety alignment of LLM is trained on data with safety-related categories. However, our experiments find that naively increasing the scale of safety training data usually leads the LLMs to an ``overly safe'' state rather than a ``truly safe'' state, boosting the refusal rate through extensive safety-aligned data without genuinely understanding the requirements for safe responses. Such an approach can inadvertently diminish the models' helpfulness. To understand the phenomenon, we first investigate the role of safety data by categorizing them into three different groups, and observe that each group behaves differently as training data scales up. To boost the balance between safety and helpfulness, we propose an Equilibrate RLHF framework including a Fine-grained Data-centric (FDC) approach that achieves better safety alignment even with fewer training data, and an Adaptive Message-wise Alignment (AMA) approach, which selectively highlight the key segments through a gradient masking strategy. Extensive experimental results demonstrate that our approach significantly enhances the safety alignment of LLMs while balancing safety and helpfulness.


MIM: Multi-modal Content Interest Modeling Paradigm for User Behavior Modeling

arXiv.org Artificial Intelligence

Click-Through Rate (CTR) prediction is a crucial task in recommendation systems, online searches, and advertising platforms, where accurately capturing users' real interests in content is essential for performance. However, existing methods heavily rely on ID embeddings, which fail to reflect users' true preferences for content such as images and titles. This limitation becomes particularly evident in cold-start and long-tail scenarios, where traditional approaches struggle to deliver effective results. To address these challenges, we propose a novel Multi-modal Content Interest Modeling paradigm (MIM), which consists of three key stages: Pre-training, Content-Interest-Aware Supervised Fine-Tuning (C-SFT), and Content-Interest-Aware UBM (CiUBM). The pre-training stage adapts foundational models to domain-specific data, enabling the extraction of high-quality multi-modal embeddings. The C-SFT stage bridges the semantic gap between content and user interests by leveraging user behavior signals to guide the alignment of embeddings with user preferences. Finally, the CiUBM stage integrates multi-modal embeddings and ID-based collaborative filtering signals into a unified framework. Comprehensive offline experiments and online A/B tests conducted on the Taobao, one of the world's largest e-commerce platforms, demonstrated the effectiveness and efficiency of MIM method. The method has been successfully deployed online, achieving a significant increase of +14.14% in CTR and +4.12% in RPM, showcasing its industrial applicability and substantial impact on platform performance. To promote further research, we have publicly released the code and dataset at https://pan.quark.cn/s/8fc8ec3e74f3.