Stolcke, Andreas
Improving speaker verification robustness with synthetic emotional utterances
Koditala, Nikhil Kumar, Ju, Chelsea Jui-Ting, Li, Ruirui, Jin, Minho, Chadha, Aman, Stolcke, Andreas
A speaker verification (SV) system offers an authentication service designed to confirm whether a given speech sample originates from a specific speaker. This technology has paved the way for various personalized applications that cater to individual preferences. A noteworthy challenge faced by SV systems is their ability to perform consistently across a range of emotional spectra. Most existing models exhibit high error rates when dealing with emotional utterances compared to neutral ones. Consequently, this phenomenon often leads to missing out on speech of interest. This issue primarily stems from the limited availability of labeled emotional speech data, impeding the development of robust speaker representations that encompass diverse emotional states. To address this concern, we propose a novel approach employing the CycleGAN framework to serve as a data augmentation method. This technique synthesizes emotional speech segments for each specific speaker while preserving the unique vocal identity. Our experimental findings underscore the effectiveness of incorporating synthetic emotional data into the training process. The models trained using this augmented dataset consistently outperform the baseline models on the task of verifying speakers in emotional speech scenarios, reducing equal error rate by as much as 3.64% relative.
Lightweight Safety Guardrails Using Fine-tuned BERT Embeddings
Zheng, Aaron, Rana, Mansi, Stolcke, Andreas
With the recent proliferation of large language models (LLMs), enterprises have been able to rapidly develop proof-of-concepts and prototypes. As a result, there is a growing need to implement robust guardrails that monitor, quantize and control an LLM's behavior, ensuring that the use is reliable, safe, accurate and also aligned with the users' expectations. Previous approaches for filtering out inappropriate user prompts or system outputs, such as LlamaGuard and OpenAI's MOD API, have achieved significant success by fine-tuning existing LLMs. However, using fine-tuned LLMs as guardrails introduces increased latency and higher maintenance costs, which may not be practical or scalable for cost-efficient deployments. We take a different approach, focusing on fine-tuning a lightweight architecture: Sentence-BERT. This method reduces the model size from LlamaGuard's 7 billion parameters to approximately 67 million, while maintaining comparable performance on the AEGIS safety benchmark.
Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward
Kumar, Shashi, Thorbecke, Iuliia, Burdisso, Sergio, Villatoro-Tello, Esaรบ, E, Manjunath K, Hacioฤlu, Kadri, Rangappa, Pradeep, Motlicek, Petr, Ganapathiraju, Aravind, Stolcke, Andreas
Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities. Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions, such as domain shifts and different speech perturbations. In this paper, we address these questions by conducting various ablation experiments using a recent and widely adopted approach called SLAM-ASR. We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture across a wide range of settings. Our main findings indicate that the SLAM-ASR exhibits poor performance in cross-domain evaluation settings. Additionally, speech perturbations within in-domain data, such as changes in speed or the presence of additive noise, can significantly impact performance. Our findings offer critical insights for fine-tuning and configuring robust LLM-based ASR models, tailored to different data characteristics and computational resources.
Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output
Sankararaman, Hithesh, Yasin, Mohammed Nasheed, Sorensen, Tanner, Di Bari, Alessandro, Stolcke, Andreas
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG). Given a context and putative output, we compute a factuality score that can be thresholded to yield a binary decision to check the results of LLM-based question-answering, summarization, or other systems. Unlike factuality checkers that themselves rely on LLMs, we use compact, open-source natural language inference (NLI) models that yield a freely accessible solution with low latency and low cost at run-time, and no need for LLM fine-tuning. The approach also enables downstream mitigation and correction of hallucinations, by tracing them back to specific context chunks. Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets, indicating the effectiveness of our method for fact-checking RAG output.
REFINE on Scarce Data: Retrieval Enhancement through Fine-Tuning via Model Fusion of Embedding Models
Gupta, Ambuje, Rawat, Mrinal, Stolcke, Andreas, Pieraccini, Roberto
Retrieval augmented generation (RAG) pipelines are commonly used in tasks such as question-answering (QA), relying on retrieving relevant documents from a vector store computed using a pretrained embedding model. However, if the retrieved context is inaccurate, the answers generated using the large language model (LLM) may contain errors or hallucinations. Although pretrained embedding models have advanced, adapting them to new domains remains challenging. Fine-tuning is a potential solution, but industry settings often lack the necessary fine-tuning data. To address these challenges, we propose REFINE, a novel technique that generates synthetic data from available documents and then uses a model fusion approach to fine-tune embeddings for improved retrieval performance in new domains, while preserving out-of-domain capability. We conducted experiments on the two public datasets: SQUAD and RAG-12000 and a proprietary TOURISM dataset. Results demonstrate that even the standard fine-tuning with the proposed data augmentation technique outperforms the vanilla pretrained model. Furthermore, when combined with model fusion, the proposed approach achieves superior performance, with a 5.76% improvement in recall on the TOURISM dataset, and 6.58 % and 0.32% enhancement on SQUAD and RAG-12000 respectively.
Turn-taking and Backchannel Prediction with Acoustic and Large Language Model Fusion
Wang, Jinhan, Chen, Long, Khare, Aparna, Raju, Anirudh, Dheram, Pranav, He, Di, Wu, Minhua, Stolcke, Andreas, Ravichandran, Venkatesh
We propose an approach for continuous prediction of turn-taking and backchanneling locations in spoken dialogue by fusing a neural acoustic model with a large language model (LLM). Experiments on the Switchboard human-human conversation dataset demonstrate that our approach consistently outperforms the baseline models with single modality. We also develop a novel multi-task instruction fine-tuning strategy to further benefit from LLM-encoded knowledge for understanding the tasks and conversational contexts, leading to additional improvements. Our approach demonstrates the potential of combined LLMs and acoustic models for a more natural and conversational interaction between humans and speech-enabled AI agents.
Post-Training Embedding Alignment for Decoupling Enrollment and Runtime Speaker Recognition Models
Gao, Chenyang, Desplanques, Brecht, Ju, Chelsea J. -T., Chadha, Aman, Stolcke, Andreas
Automated speaker identification (SID) is a crucial step for the personalization of a wide range of speech-enabled services. Typical SID systems use a symmetric enrollment-verification framework with a single model to derive embeddings both offline for voice profiles extracted from enrollment utterances, and online from runtime utterances. Due to the distinct circumstances of enrollment and runtime, such as different computation and latency constraints, several applications would benefit from an asymmetric enrollment-verification framework that uses different models for enrollment and runtime embedding generation. To support this asymmetric SID where each of the two models can be updated independently, we propose using a lightweight neural network to map the embeddings from the two independent models to a shared speaker embedding space. Our results show that this approach significantly outperforms cosine scoring in a shared speaker logit space for models that were trained with a contrastive loss on large datasets with many speaker identities. This proposed Neural Embedding Speaker Space Alignment (NESSA) combined with an asymmetric update of only one of the models delivers at least 60% of the performance gain achieved by updating both models in the standard symmetric SID approach.
Investigating Training Strategies and Model Robustness of Low-Rank Adaptation for Language Modeling in Speech Recognition
Yu, Yu, Yang, Chao-Han Huck, Dinh, Tuan, Ryu, Sungho, Kolehmainen, Jari, Ren, Roger, Filimonov, Denis, Shivakumar, Prashanth G., Gandhe, Ankur, Rastow, Ariya, Xu, Jia, Bulyko, Ivan, Stolcke, Andreas
The use of low-rank adaptation (LoRA) with frozen pretrained language models (PLMs) has become increasing popular as a mainstream, resource-efficient modeling approach for memory-constrained hardware. In this study, we first explore how to enhance model performance by introducing various LoRA training strategies, achieving relative word error rate reductions of 3.50\% on the public Librispeech dataset and of 3.67\% on an internal dataset in the messaging domain. To further characterize the stability of LoRA-based second-pass speech recognition models, we examine robustness against input perturbations. These perturbations are rooted in homophone replacements and a novel metric called N-best Perturbation-based Rescoring Robustness (NPRR), both designed to measure the relative degradation in the performance of rescoring models. Our experimental results indicate that while advanced variants of LoRA, such as dynamic rank-allocated LoRA, lead to performance degradation in $1$-best perturbation, they alleviate the degradation in $N$-best perturbation. This finding is in comparison to fully-tuned models and vanilla LoRA tuning baselines, suggesting that a comprehensive selection is needed when using LoRA-based adaptation for compute-cost savings and robust language modeling.
Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue
Lin, Guan-Ting, Shivakumar, Prashanth Gurunath, Gandhe, Ankur, Yang, Chao-Han Huck, Gu, Yile, Ghosh, Shalini, Stolcke, Andreas, Lee, Hung-yi, Bulyko, Ivan
Large Language Models (LLMs) have demonstrated superior abilities in tasks such as chatting, reasoning, and question-answering. However, standard LLMs may ignore crucial paralinguistic information, such as sentiment, emotion, and speaking style, which are essential for achieving natural, human-like spoken conversation, especially when such information is conveyed by acoustic cues. We therefore propose Paralinguistics-enhanced Generative Pretrained Transformer (ParalinGPT), an LLM that utilizes text and speech modalities to better model the linguistic content and paralinguistic attributes of spoken dialogue. The model takes the conversational context of text, speech embeddings, and paralinguistic attributes as input prompts within a serialized multitasking multimodal framework. Specifically, our framework serializes tasks in the order of current paralinguistic attribute prediction, response paralinguistic attribute prediction, and response text generation with autoregressive conditioning. We utilize the Switchboard-1 corpus, including its sentiment labels as the paralinguistic attribute, as our spoken dialogue dataset. Experimental results indicate the proposed serialized multitasking method outperforms typical sequence classification techniques on current and response sentiment classification. Furthermore, leveraging conversational context and speech embeddings significantly improves both response text generation and sentiment prediction. Our proposed framework achieves relative improvements of 6.7%, 12.0%, and 3.5% in current sentiment accuracy, response sentiment accuracy, and response text BLEU score, respectively.
Towards ASR Robust Spoken Language Understanding Through In-Context Learning With Word Confusion Networks
Everson, Kevin, Gu, Yile, Yang, Huck, Shivakumar, Prashanth Gurunath, Lin, Guan-Ting, Kolehmainen, Jari, Bulyko, Ivan, Gandhe, Ankur, Ghosh, Shalini, Hamza, Wael, Lee, Hung-yi, Rastrow, Ariya, Stolcke, Andreas
In the realm of spoken language understanding (SLU), numerous natural language understanding (NLU) methodologies have been adapted by supplying large language models (LLMs) with transcribed speech instead of conventional written text. In real-world scenarios, prior to input into an LLM, an automated speech recognition (ASR) system generates an output transcript hypothesis, where inherent errors can degrade subsequent SLU tasks. Here we introduce a method that utilizes the ASR system's lattice output instead of relying solely on the top hypothesis, aiming to encapsulate speech ambiguities and enhance SLU outcomes. Our in-context learning experiments, covering spoken question answering and intent classification, underline the LLM's resilience to noisy speech transcripts with the help of word confusion networks from lattices, bridging the SLU performance gap between using the top ASR hypothesis and an oracle upper bound. Additionally, we delve into the LLM's robustness to varying ASR performance conditions and scrutinize the aspects of in-context learning which prove the most influential.