Goto

Collaborating Authors

 Stiasny, Jochen


Correctness Verification of Neural Networks Approximating Differential Equations

arXiv.org Artificial Intelligence

Verification of Neural Networks (NNs) that approximate the solution of Partial Differential Equations (PDEs) is a major milestone towards enhancing their trustworthiness and accelerating their deployment, especially for safety-critical systems. If successful, such NNs can become integral parts of simulation software tools which can accelerate the simulation of complex dynamic systems more than 100 times. However, the verification of these functions poses major challenges; it is not straightforward how to efficiently bound them or how to represent the derivative of the NN. This work addresses both these problems. First, we define the NN derivative as a finite difference approximation. Then, we formulate the PDE residual bounding problem alongside the Initial Value Problem's error propagation. Finally, for the first time, we tackle the problem of bounding an NN function without a priori knowledge of the output domain. For this, we build a parallel branching algorithm that combines the incomplete CROWN solver and Gradient Attack for termination and domain rejection conditions. We demonstrate the strengths and weaknesses of the proposed framework, and we suggest further work to enhance its efficiency.


Error estimation for physics-informed neural networks with implicit Runge-Kutta methods

arXiv.org Artificial Intelligence

The ability to accurately approximate trajectories of dynamical systems enables their analysis, prediction, and control. Neural network (NN)-based approximations have attracted significant interest due to fast evaluation with good accuracy over long integration time steps. In contrast to established numerical approximation schemes such as Runge-Kutta methods, the estimation of the error of the NN-based approximations proves to be difficult. In this work, we propose to use the NN's predictions in a high-order implicit Runge-Kutta (IRK) method. The residuals in the implicit system of equations can be related to the NN's prediction error, hence, we can provide an error estimate at several points along a trajectory. We find that this error estimate highly correlates with the NN's prediction error and that increasing the order of the IRK method improves this estimate. We demonstrate this estimation methodology for Physics-Informed Neural Network (PINNs) on the logistic equation as an illustrative example and then apply it to a four-state electric generator model that is regularly used in power system modelling.


Physics-Informed Neural Networks for Time-Domain Simulations: Accuracy, Computational Cost, and Flexibility

arXiv.org Artificial Intelligence

The simulation of power system dynamics poses a computationally expensive task. Considering the growing uncertainty of generation and demand patterns, thousands of scenarios need to be continuously assessed to ensure the safety of power systems. Physics-Informed Neural Networks (PINNs) have recently emerged as a promising solution for drastically accelerating computations of non-linear dynamical systems. This work investigates the applicability of these methods for power system dynamics, focusing on the dynamic response to load disturbances. Comparing the prediction of PINNs to the solution of conventional solvers, we find that PINNs can be 10 to 1000 times faster than conventional solvers. At the same time, we find them to be sufficiently accurate and numerically stable even for large time steps. To facilitate a deeper understanding, this paper also present a new regularisation of Neural Network (NN) training by introducing a gradient-based term in the loss function. The resulting NNs, which we call dtNNs, help us deliver a comprehensive analysis about the strengths and weaknesses of the NN based approaches, how incorporating knowledge of the underlying physics affects NN performance, and how this compares with conventional solvers for power system dynamics.


PINNSim: A Simulator for Power System Dynamics based on Physics-Informed Neural Networks

arXiv.org Artificial Intelligence

The dynamic behaviour of a power system can be described by a system of differential-algebraic equations. Time-domain simulations are used to simulate the evolution of these dynamics. They often require the use of small time step sizes and therefore become computationally expensive. To accelerate these simulations, we propose a simulator -- PINNSim -- that allows to take significantly larger time steps. It is based on Physics-Informed Neural Networks (PINNs) for the solution of the dynamics of single components in the power system. To resolve their interaction we employ a scalable root-finding algorithm. We demonstrate PINNSim on a 9-bus system and show the increased time step size compared to a trapezoidal integration rule. We discuss key characteristics of PINNSim and important steps for developing PINNSim into a fully fledged simulator. As such, it could offer the opportunity for significantly increasing time step sizes and thereby accelerating time-domain simulations.


Transient Stability Analysis with Physics-Informed Neural Networks

arXiv.org Artificial Intelligence

We explore the possibility to use physics-informed neural networks to drastically accelerate the solution of ordinary differential-algebraic equations that govern the power system dynamics. When it comes to transient stability assessment, the traditionally applied methods either carry a significant computational burden, require model simplifications, or use overly conservative surrogate models. Conventional neural networks can circumvent these limitations but are faced with high demand of high-quality training datasets, while they ignore the underlying governing equations. Physics-informed neural networks are different: they incorporate the power system differential algebraic equations directly into the neural network training and drastically reduce the need for training data. This paper takes a deep dive into the performance of physics-informed neural networks for power system transient stability assessment. Introducing a new neural network training procedure to facilitate a thorough comparison, we explore how physics-informed neural networks compare with conventional differential-algebraic solvers and classical neural networks in terms of computation time, requirements in data, and prediction accuracy. We illustrate the findings on the Kundur two-area system, and assess the opportunities and challenges of physics-informed neural networks to serve as a transient stability analysis tool, highlighting possible pathways to further develop this method.


Closing the Loop: A Framework for Trustworthy Machine Learning in Power Systems

arXiv.org Artificial Intelligence

Deep decarbonization of the energy sector will require massive penetration of stochastic renewable energy resources and an enormous amount of grid asset coordination; this represents a challenging paradigm for the power system operators who are tasked with maintaining grid stability and security in the face of such changes. With its ability to learn from complex datasets and provide predictive solutions on fast timescales, machine learning (ML) is well-posed to help overcome these challenges as power systems transform in the coming decades. In this work, we outline five key challenges (dataset generation, data pre-processing, model training, model assessment, and model embedding) associated with building trustworthy ML models which learn from physics-based simulation data. We then demonstrate how linking together individual modules, each of which overcomes a respective challenge, at sequential stages in the machine learning pipeline can help enhance the overall performance of the training process. In particular, we implement methods that connect different elements of the learning pipeline through feedback, thus "closing the loop" between model training, performance assessments, and re-training. We demonstrate the effectiveness of this framework, its constituent modules, and its feedback connections by learning the N-1 small-signal stability margin associated with a detailed model of a proposed North Sea Wind Power Hub system.