Goto

Collaborating Authors

 Steven Z. Wu



Private Hypothesis Selection

Neural Information Processing Systems

We provide a differentially private algorithm for hypothesis selection. Given samples from an unknown probability distribution P and a set of m probability distributions H, the goal is to output, in a ε-differentially private manner, a distribution from H whose total variation distance to P is comparable to that of the best such distribution (which we denote by α).



Equal Opportunity in Online Classification with Partial Feedback

Neural Information Processing Systems

We study an online classification problem with partial feedback in which individuals arrive one at a time from a fixed but unknown distribution, and must be classified as positive or negative. Our algorithm only observes the true label of an individual if they are given a positive classification. This setting captures many classification problems for which fairness is a concern: for example, in criminal recidivism prediction, recidivism is only observed if the inmate is released; in lending applications, loan repayment is only observed if the loan is granted. We require that our algorithms satisfy common statistical fairness constraints (such as equalizing false positive or negative rates -- introduced as "equal opportunity" in [18]) at every round, with respect to the underlying distribution. We give upper and lower bounds characterizing the cost of this constraint in terms of the regret rate (and show that it is mild), and give an oracle efficient algorithm that achieves the upper bound.



Private Hypothesis Selection

Neural Information Processing Systems

We provide a differentially private algorithm for hypothesis selection. Given samples from an unknown probability distribution P and a set of m probability distributions H, the goal is to output, in a ε-differentially private manner, a distribution from H whose total variation distance to P is comparable to that of the best such distribution (which we denote by α).


Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond

Neural Information Processing Systems

Several important families of computational and statistical results in machine learning and randomized algorithms rely on uniform bounds on quadratic forms of random vectors or matrices. Such results include the Johnson-Lindenstrauss (J-L) Lemma, the Restricted Isometry Property (RIP), randomized sketching algorithms, and approximate linear algebra. The existing results critically depend on statistical independence, e.g., independent entries for random vectors, independent rows for random matrices, etc., which prevent their usage in dependent or adaptive modeling settings. In this paper, we show that such independence is in fact not needed for such results which continue to hold under fairly general dependence structures. In particular, we present uniform bounds on random quadratic forms of stochastic processes which are conditionally independent and sub-Gaussian given another (latent) process. Our setup allows general dependencies of the stochastic process on the history of the latent process and the latent process to be influenced by realizations of the stochastic process. The results are thus applicable to adaptive modeling settings and also allows for sequential design of random vectors and matrices. We also discuss stochastic process based forms of J-L, RIP, and sketching, to illustrate the generality of the results.


Equal Opportunity in Online Classification with Partial Feedback

Neural Information Processing Systems

We study an online classification problem with partial feedback in which individuals arrive one at a time from a fixed but unknown distribution, and must be classified as positive or negative. Our algorithm only observes the true label of an individual if they are given a positive classification. This setting captures many classification problems for which fairness is a concern: for example, in criminal recidivism prediction, recidivism is only observed if the inmate is released; in lending applications, loan repayment is only observed if the loan is granted. We require that our algorithms satisfy common statistical fairness constraints (such as equalizing false positive or negative rates -- introduced as "equal opportunity" in [18]) at every round, with respect to the underlying distribution. We give upper and lower bounds characterizing the cost of this constraint in terms of the regret rate (and show that it is mild), and give an oracle efficient algorithm that achieves the upper bound.


Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs

Neural Information Processing Systems

We define and study the problem of predicting the solution to a linear program (LP) given only partial information about its objective and constraints. This generalizes the problem of learning to predict the purchasing behavior of a rational agent who has an unknown objective function, that has been studied under the name "Learning from Revealed Preferences". We give mistake bound learning algorithms in two settings: in the first, the objective of the LP is known to the learner but there is an arbitrary, fixed set of constraints which are unknown. Each example is defined by an additional known constraint and the goal of the learner is to predict the optimal solution of the LP given the union of the known and unknown constraints. This models the problem of predicting the behavior of a rational agent whose goals are known, but whose resources are unknown. In the second setting, the objective of the LP is unknown, and changing in a controlled way. The constraints of the LP may also change every day, but are known. An example is given by a set of constraints and partial information about the objective, and the task of the learner is again to predict the optimal solution of the partially known LP.


Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM

Neural Information Processing Systems

Traditional approaches to differential privacy assume a fixed privacy requirement ε for a computation, and attempt to maximize the accuracy of the computation subject to the privacy constraint. As differential privacy is increasingly deployed in practical settings, it may often be that there is instead a fixed accuracy requirement for a given computation and the data analyst would like to maximize the privacy of the computation subject to the accuracy constraint. This raises the question of how to find and run a maximally private empirical risk minimizer subject to a given accuracy requirement. We propose a general "noise reduction" framework that can apply to a variety of private empirical risk minimization (ERM) algorithms, using them to "search" the space of privacy levels to find the empirically strongest one that meets the accuracy constraint, and incurring only logarithmic overhead in the number of privacy levels searched. The privacy analysis of our algorithm leads naturally to a version of differential privacy where the privacy parameters are dependent on the data, which we term ex-post privacy, and which is related to the recently introduced notion of privacy odometers. We also give an ex-post privacy analysis of the classical AboveThreshold privacy tool, modifying it to allow for queries chosen depending on the database. Finally, we apply our approach to two common objective functions, regularized linear and logistic regression, and empirically compare our noise reduction methods to (i) inverting the theoretical utility guarantees of standard private ERM algorithms and (ii) a stronger, empirical baseline based on binary search.