Stella, Lorenzo
ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables
Arango, Sebastian Pineda, Mercado, Pedro, Kapoor, Shubham, Ansari, Abdul Fatir, Stella, Lorenzo, Shen, Huibin, Senetaire, Hugo, Turkmen, Caner, Shchur, Oleksandr, Maddix, Danielle C., Bohlke-Schneider, Michael, Wang, Yuyang, Rangapuram, Syama Sundar
Covariates provide valuable information on external factors that influence time series and are critical in many real-world time series forecasting tasks. For example, in retail, covariates may indicate promotions or peak dates such as holiday seasons that heavily influence demand forecasts. Recent advances in pretraining large language model architectures for time series forecasting have led to highly accurate forecasters. However, the majority of these models do not readily use covariates as they are often specific to a certain task or domain. This paper introduces a new method to incorporate covariates into pretrained time series forecasting models. Our proposed approach incorporates covariate information into pretrained forecasting models through modular blocks that inject past and future covariate information, without necessarily modifying the pretrained model in consideration. In order to evaluate our approach, we introduce a benchmark composed of 32 different synthetic datasets with varying dynamics to evaluate the effectivity of forecasting models with covariates. Extensive evaluations on both synthetic and real datasets show that our approach effectively incorporates covariate information into pretrained models, outperforming existing baselines.
Chronos: Learning the Language of Time Series
Ansari, Abdul Fatir, Stella, Lorenzo, Turkmen, Caner, Zhang, Xiyuan, Mercado, Pedro, Shen, Huibin, Shchur, Oleksandr, Rangapuram, Syama Sundar, Arango, Sebastian Pineda, Kapoor, Shubham, Zschiegner, Jasper, Maddix, Danielle C., Wang, Hao, Mahoney, Michael W., Torkkola, Kari, Wilson, Andrew Gordon, Bohlke-Schneider, Michael, Wang, Yuyang
We introduce Chronos, a simple yet effective framework for pretrained probabilistic time series models. Chronos tokenizes time series values using scaling and quantization into a fixed vocabulary and trains existing transformer-based language model architectures on these tokenized time series via the cross-entropy loss. We pretrained Chronos models based on the T5 family (ranging from 20M to 710M parameters) on a large collection of publicly available datasets, complemented by a synthetic dataset that we generated via Gaussian processes to improve generalization. In a comprehensive benchmark consisting of 42 datasets, and comprising both classical local models and deep learning methods, we show that Chronos models: (a) significantly outperform other methods on datasets that were part of the training corpus; and (b) have comparable and occasionally superior zero-shot performance on new datasets, relative to methods that were trained specifically on them. Our results demonstrate that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks, positioning pretrained models as a viable tool to greatly simplify forecasting pipelines.
Deep Non-Parametric Time Series Forecaster
Rangapuram, Syama Sundar, Gasthaus, Jan, Stella, Lorenzo, Flunkert, Valentin, Salinas, David, Wang, Yuyang, Januschowski, Tim
This paper presents non-parametric baseline models for time series forecasting. Unlike classical forecasting models, the proposed approach does not assume any parametric form for the predictive distribution and instead generates predictions by sampling from the empirical distribution according to a tunable strategy. By virtue of this, the model is always able to produce reasonable forecasts (i.e., predictions within the observed data range) without fail unlike classical models that suffer from numerical stability on some data distributions. Moreover, we develop a global version of the proposed method that automatically learns the sampling strategy by exploiting the information across multiple related time series. The empirical evaluation shows that the proposed methods have reasonable and consistent performance across all datasets, proving them to be strong baselines to be considered in one's forecasting toolbox.
Adaptive proximal algorithms for convex optimization under local Lipschitz continuity of the gradient
Latafat, Puya, Themelis, Andreas, Stella, Lorenzo, Patrinos, Panagiotis
Backtracking linesearch is the de facto approach for minimizing continuously differentiable functions with locally Lipschitz gradient. In recent years, it has been shown that in the convex setting it is possible to avoid linesearch altogether, and to allow the stepsize to adapt based on a local smoothness estimate without any backtracks or evaluations of the function value. In this work we propose an adaptive proximal gradient method, adaPG, that uses novel estimates of the local smoothness modulus which leads to less conservative stepsize updates and that can additionally cope with nonsmooth terms. This idea is extended to the primal-dual setting where an adaptive three-term primal-dual algorithm, adaPD, is proposed which can be viewed as an extension of the PDHG method. Moreover, in this setting the ``essentially'' fully adaptive variant adaPD$^+$ is proposed that avoids evaluating the linear operator norm by invoking a backtracking procedure, that, remarkably, does not require extra gradient evaluations. Numerical simulations demonstrate the effectiveness of the proposed algorithms compared to the state of the art.
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Benidis, Konstantinos, Rangapuram, Syama Sundar, Flunkert, Valentin, Wang, Yuyang, Maddix, Danielle, Turkmen, Caner, Gasthaus, Jan, Bohlke-Schneider, Michael, Salinas, David, Stella, Lorenzo, Aubet, Francois-Xavier, Callot, Laurent, Januschowski, Tim
Deep learning based forecasting methods have become the methods of choice in many applications of time series prediction or forecasting often outperforming other approaches. Consequently, over the last years, these methods are now ubiquitous in large-scale industrial forecasting applications and have consistently ranked among the best entries in forecasting competitions (e.g., M4 and M5). This practical success has further increased the academic interest to understand and improve deep forecasting methods. In this article we provide an introduction and overview of the field: We present important building blocks for deep forecasting in some depth; using these building blocks, we then survey the breadth of the recent deep forecasting literature.
Anomaly Detection at Scale: The Case for Deep Distributional Time Series Models
Ayed, Fadhel, Stella, Lorenzo, Januschowski, Tim, Gasthaus, Jan
This paper introduces a new methodology for detecting anomalies in time series data, with a primary application to monitoring the health of (micro-) services and cloud resources. The main novelty in our approach is that instead of modeling time series consisting of real values or vectors of real values, we model time series of probability distributions over real values (or vectors). This extension to time series of probability distributions allows the technique to be applied to the common scenario where the data is generated by requests coming in to a service, which is then aggregated at a fixed temporal frequency. Our method is amenable to streaming anomaly detection and scales to monitoring for anomalies on millions of time series. We show the superior accuracy of our method on synthetic and public real-world data. On the Yahoo Webscope data set, we outperform the state of the art in 3 out of 4 data sets and we show that we outperform popular open-source anomaly detection tools by up to 17% average improvement for a real-world data set.
GluonTS: Probabilistic Time Series Models in Python
Alexandrov, Alexander, Benidis, Konstantinos, Bohlke-Schneider, Michael, Flunkert, Valentin, Gasthaus, Jan, Januschowski, Tim, Maddix, Danielle C., Rangapuram, Syama, Salinas, David, Schulz, Jasper, Stella, Lorenzo, Tรผrkmen, Ali Caner, Wang, Yuyang
We introduce Gluon Time Series (GluonTS, available at https://gluon-ts.mxnet.io), a library for deep-learning-based time series modeling. GluonTS simplifies the development of and experimentation with time series models for common tasks such as forecasting or anomaly detection. It provides all necessary components and tools that scientists need for quickly building new models, for efficiently running and analyzing experiments and for evaluating model accuracy.
Deep State Space Models for Time Series Forecasting
Rangapuram, Syama Sundar, Seeger, Matthias W., Gasthaus, Jan, Stella, Lorenzo, Wang, Yuyang, Januschowski, Tim
We present a novel approach to probabilistic time series forecasting that combines state space models with deep learning. By parametrizing a per-time-series linear state space model with a jointly-learned recurrent neural network, our method retains desired properties of state space models such as data efficiency and interpretability, while making use of the ability to learn complex patterns from raw data offered by deep learning approaches. Our method scales gracefully from regimes where little training data is available to regimes where data from millions of time series can be leveraged to learn accurate models. We provide qualitative as well as quantitative results with the proposed method, showing that it compares favorably to the state-of-the-art.
Deep State Space Models for Time Series Forecasting
Rangapuram, Syama Sundar, Seeger, Matthias W., Gasthaus, Jan, Stella, Lorenzo, Wang, Yuyang, Januschowski, Tim
We present a novel approach to probabilistic time series forecasting that combines state space models with deep learning. By parametrizing a per-time-series linear state space model with a jointly-learned recurrent neural network, our method retains desired properties of state space models such as data efficiency and interpretability, while making use of the ability to learn complex patterns from raw data offered by deep learning approaches. Our method scales gracefully from regimes where little training data is available to regimes where data from large collection of time series can be leveraged to learn accurate models. We provide qualitative as well as quantitative results with the proposed method, showing that it compares favorably to the state-of-the-art.