Stanley, Jason
Societal Alignment Frameworks Can Improve LLM Alignment
Stańczak, Karolina, Meade, Nicholas, Bhatia, Mehar, Zhou, Hattie, Böttinger, Konstantin, Barnes, Jeremy, Stanley, Jason, Montgomery, Jessica, Zemel, Richard, Papernot, Nicolas, Chapados, Nicolas, Therien, Denis, Lillicrap, Timothy P., Marasović, Ana, Delacroix, Sylvie, Hadfield, Gillian K., Reddy, Siva
Recent progress in large language models (LLMs) has focused on producing responses that meet human expectations and align with shared values - a process coined alignment. However, aligning LLMs remains challenging due to the inherent disconnect between the complexity of human values and the narrow nature of the technological approaches designed to address them. Current alignment methods often lead to misspecified objectives, reflecting the broader issue of incomplete contracts, the impracticality of specifying a contract between a model developer, and the model that accounts for every scenario in LLM alignment. In this paper, we argue that improving LLM alignment requires incorporating insights from societal alignment frameworks, including social, economic, and contractual alignment, and discuss potential solutions drawn from these domains. Given the role of uncertainty within societal alignment frameworks, we then investigate how it manifests in LLM alignment. We end our discussion by offering an alternative view on LLM alignment, framing the underspecified nature of its objectives as an opportunity rather than perfect their specification. Beyond technical improvements in LLM alignment, we discuss the need for participatory alignment interface designs.
LLMs for Literature Review: Are we there yet?
Agarwal, Shubham, Sahu, Gaurav, Puri, Abhay, Laradji, Issam H., Dvijotham, Krishnamurthy DJ, Stanley, Jason, Charlin, Laurent, Pal, Christopher
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Further, we demonstrate that our planning-based approach achieves higher-quality reviews by minimizing hallucinated references in the generated review by 18-26% compared to existing simpler LLM-based generation methods.
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
Duong, Thai, Altawaitan, Abdullah, Stanley, Jason, Atanasov, Nikolay
Accurate models of robot dynamics are critical for safe and stable control and generalization to novel operational conditions. Hand-designed models, however, may be insufficiently accurate, even after careful parameter tuning. This motivates the use of machine learning techniques to approximate the robot dynamics over a training set of state-control trajectories. The dynamics of many robots are described in terms of their generalized coordinates on a matrix Lie group, e.g. on SE(3) for ground, aerial, and underwater vehicles, and generalized velocity, and satisfy conservation of energy principles. This paper proposes a (port-)Hamiltonian formulation over a Lie group of the structure of a neural ordinary differential equation (ODE) network to approximate the robot dynamics. In contrast to a black-box ODE network, our formulation guarantees energy conservation principle and Lie group's constraints by construction and explicitly accounts for energy-dissipation effect such as friction and drag forces in the dynamics model. We develop energy shaping and damping injection control for the learned, potentially under-actuated Hamiltonian dynamics to enable a unified approach for stabilization and trajectory tracking with various robot platforms.
Hamiltonian Dynamics Learning from Point Cloud Observations for Nonholonomic Mobile Robot Control
Altawaitan, Abdullah, Stanley, Jason, Ghosal, Sambaran, Duong, Thai, Atanasov, Nikolay
Reliable autonomous navigation requires adapting the control policy of a mobile robot in response to dynamics changes in different operational conditions. Hand-designed dynamics models may struggle to capture model variations due to a limited set of parameters. Data-driven dynamics learning approaches offer higher model capacity and better generalization but require large amounts of state-labeled data. This paper develops an approach for learning robot dynamics directly from point-cloud observations, removing the need and associated errors of state estimation, while embedding Hamiltonian structure in the dynamics model to improve data efficiency. We design an observation-space loss that relates motion prediction from the dynamics model with motion prediction from point-cloud registration to train a Hamiltonian neural ordinary differential equation. The learned Hamiltonian model enables the design of an energy-shaping model-based tracking controller for rigid-body robots. We demonstrate dynamics learning and tracking control on a real nonholonomic wheeled robot.
Active Diagnosis via AUC Maximization: An Efficient Approach for Multiple Fault Identification in Large Scale, Noisy Networks
Bellala, Gowtham, Stanley, Jason, Scott, Clayton, Bhavnani, Suresh K.
The problem of active diagnosis arises in several applications such as disease diagnosis, and fault diagnosis in computer networks, where the goal is to rapidly identify the binary states of a set of objects (e.g., faulty or working) by sequentially selecting, and observing, (noisy) responses to binary valued queries. Current algorithms in this area rely on loopy belief propagation for active query selection. These algorithms have an exponential time complexity, making them slow and even intractable in large networks. We propose a rank-based greedy algorithm that sequentially chooses queries such that the area under the ROC curve of the rank-based output is maximized. The AUC criterion allows us to make a simplifying assumption that significantly reduces the complexity of active query selection (from exponential to near quadratic), with little or no compromise on the performance quality.