Goto

Collaborating Authors

 Stanescu, Marius


The Quo Vadis submission at Traffic4cast 2019

arXiv.org Machine Learning

We describe the submission of the Quo Vadis team to the Traffic4cast competition, which was organized as part of the NeurIPS 2019 series of challenges. Our system consists of a temporal regression module, implemented as $1\times1$ 2d convolutions, augmented with spatio-temporal biases. We have found that using biases is a straightforward and efficient way to include seasonal patterns and to improve the performance of the temporal regression model. Our implementation obtains a mean squared error of $9.47\times 10^{-3}$ on the test data, placing us on the eight place team-wise. We also present our attempts at incorporating spatial correlations into the model; however, contrary to our expectations, adding this type of auxiliary information did not benefit the main system. Our code is available at https://github.com/danoneata/traffic4cast.


Combining Strategic Learning with Tactical Search in Real-Time Strategy Games

AAAI Conferences

A commonly used technique for managing AI complexity in real-time strategy (RTS) games is to use action and/or state abstractions. High-level abstractions can often lead to good strategic decision making, but tactical decision quality may suffer due to lost details. A competing method is to sample the search space which often leads to good tactical performance in simple scenarios, but poor high-level planning. We propose to use a deep convolutional neural network (CNN) to select among a limited set of abstract action choices, and to utilize the remaining computation time for game tree search to improve low level tactics. The CNN is trained by supervised learning on game states labelled by Puppet Search, a strategic search algorithm that uses action abstractions. The network is then used to select a script — an abstract action -— to produce low level actions for all units. Subsequently, the game tree search algorithm improves the tactical actions of a subset of units using a limited view of the game state only considering units close to opponent units. Experiments in the microRTS game show that the combined algorithm results in higher win-rates than either of its two independent components and other state-of-the-art microRTS agents. To the best of our knowledge, this is the first successful application of a convolutional network to play a full RTS game on standard game maps, as previous work has focused on sub-problems, such as combat, or on very small maps.


Puppet Search: Enhancing Scripted Behavior by Look-Ahead Search with Applications to Real-Time Strategy Games

AAAI Conferences

Real-Time Strategy (RTS) games have shown to be very resilient to standard  adversarial tree search techniques. Recently, a few approaches to tackle their complexity have emerged that use game state or move abstractions, or both. Unfortunately, the supporting experiments were either limited to simpler RTS environments ( u RTS, SparCraft) or lack testing against state-of-the-art game playing agents. Here, we propose Puppet Search , a new adversarial search framework based on scripts that can expose choice points to a look-ahead search procedure. Selecting a combination of a script and decisions for its choice points represents a move to be applied next. Such moves can be executed in the actual game, thus letting the script play, or in an abstract representation of the game state which can be used by an adversarial tree search algorithm. Puppet Search returns a principal variation of scripts and choices to be executed by the agent for a given time span. We implemented the algorithm in a complete StarCraft bot. Experiments show that it matches or outperforms all of the individual scripts that it uses when playing against state-of-the-art bots from the 2014 AIIDE StarCraft competition.


Hierarchical Adversarial Search Applied to Real-Time Strategy Games

AAAI Conferences

Real-Time Strategy (RTS) video games have proven to be a very challenging application area for artificial intelligence research. Existing AI solutionsare limited by vast state and action spaces and real-time constraints. Most implementations efficiently tackle various tactical or strategic sub-problems, but there is no single algorithm fast enough to be successfully applied to big problem sets (such as a complete instance of the StarCraft RTS game). This paper presents a hierarchical adversarial search framework which more closely models the human way of thinking --- much like the chain of command employed by the military. Each level implements a different abstraction --- from deciding how to win the game at the top of the hierarchy to individual unit orders at the bottom. We apply a 3-layer version of our model to SparCraft ---a StarCraft combat simulator --- and show that it outperforms state of the art algorithms such as Alpha-Beta, UCT, and Portfolio Search in large combat scenarios featuring multiple bases and up to 72 mobile units per player under real-time constraints of 40 ms per search episode.


Predicting Army Combat Outcomes in StarCraft

AAAI Conferences

Smart decision making at the tactical level is important for Artificial Intelligence (AI) agents to perform well in the domain of real-time strategy (RTS) games.  This paper presents a Bayesian model that can be used to predict the outcomes of isolated battles, as well as predict what units are needed to defeat a given army.  Model parameters are learned from simulated battles, in order to minimize the dependency on player skill.  We apply our model to the game of StarCraft,  with the end-goal of using the predictor as a module for making high-level combat decisions, and show that the model is capable of making accurate predictions.