Goto

Collaborating Authors

 Staar, Peter


Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence

arXiv.org Artificial Intelligence

Ensuring the safety of generative MLLMs is absolutely crucial in order to prevent harm, build trust, address ethical concerns, and enable their responsible deployment in real-world applications. Our results demonstrate that Granite Vision performs almost at par with baselines (despite being the lightest MLLM in the comparison pool) for VLM-as-a-Judge task. Notably, the addition of Safety Vectors to Granite Vision leads to a significant improvement in safety classification performance. We do acknowledge that further work needs to be done to improve high-level reasoning and correct occasional incorrect outputs to improve reliability in sensitive tasks, which require nuanced classification. To address these, we will incorporate more reasoning-focused and structure-related data into the training process in the future. In addition, we showed in this paper that finding safety vectors (SVs) in Granite Vision's attention heads led to significant improvements when safety tasks were reformulated as classification problems. Current reliance for SVs is on few-shot samples which are informative but may have limited scope in terms of capturing the range of possible safety issues that can be encountered. To further improve the model's ability to identify and address all safety concerns, we plan to investigate scaling up SVs using more training data in future research.


Know Your RAG: Dataset Taxonomy and Generation Strategies for Evaluating RAG Systems

arXiv.org Artificial Intelligence

Retrieval Augmented Generation (RAG) systems are a widespread application of Large Language Models (LLMs) in the industry. While many tools exist empowering developers to build their own systems, measuring their performance locally, with datasets reflective of the system's use cases, is a technological challenge. Solutions to this problem range from non-specific and cheap (most public datasets) to specific and costly (generating data from local documents). In this paper, we show that using public question and answer (Q&A) datasets to assess retrieval performance can lead to non-optimal systems design, and that common tools for RAG dataset generation can lead to unbalanced data. We propose solutions to these issues based on the characterization of RAG datasets through labels and through label-targeted data generation. Finally, we show that fine-tuned small LLMs can efficiently generate Q&A datasets. We believe that these observations are invaluable to the know-your-data step of RAG systems development.


Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs

arXiv.org Artificial Intelligence

Environment, Social, and Governance (ESG) KPIs assess an organization's performance on issues such as climate change, greenhouse gas emissions, water consumption, waste management, human rights, diversity, and policies. ESG reports convey this valuable quantitative information through tables. Unfortunately, extracting this information is difficult due to high variability in the table structure as well as content. We propose Statements, a novel domain agnostic data structure for extracting quantitative facts and related information. We propose translating tables to statements as a new supervised deep-learning universal information extraction task. We introduce SemTabNet - a dataset of over 100K annotated tables. Investigating a family of T5-based Statement Extraction Models, our best model generates statements which are 82% similar to the ground-truth (compared to baseline of 21%). We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports. The homogeneous nature of statements permits exploratory data analysis on expansive information found in large collections of ESG reports.


INDUS: Effective and Efficient Language Models for Scientific Applications

arXiv.org Artificial Intelligence

Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this pivotal insight, we developed INDUS, a comprehensive suite of LLMs tailored for the Earth science, biology, physics, heliophysics, planetary sciences and astrophysics domains and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address natural language understanding tasks, (2) a contrastive-learning-based general text embedding model trained using a diverse set of datasets drawn from multiple sources to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation techniques to address applications which have latency or resource constraints. We also created three new scientific benchmark datasets namely, CLIMATE-CHANGE-NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. Finally, we show that our models outperform both general-purpose encoders (RoBERTa) and existing domain-specific encoders (SciBERT) on these new tasks as well as existing benchmark tasks in the domains of interest.


KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents

arXiv.org Artificial Intelligence

In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains. This effort has attracted substantial interest from both industry and academy, highlighting its significance in the current technological landscape. Most datasets in this area are primarily focused on Key Information Extraction (KIE), where the extraction process revolves around extracting information using a specific, predefined set of keys. Unlike most existing datasets and benchmarks, our focus is on discovering key-value pairs (KVPs) without relying on predefined keys, navigating through an array of diverse templates and complex layouts. This task presents unique challenges, primarily due to the absence of comprehensive datasets and benchmarks tailored for non-predetermined KVP extraction. To address this gap, we introduce KVP10k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707 richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversity in data and richly detailed annotations, paving the way for advancements in the field of information extraction from complex business documents.


ESG Accountability Made Easy: DocQA at Your Service

arXiv.org Artificial Intelligence

We present Deep Search DocQA. This application enables information extraction from documents via a question-answering conversational assistant. The system integrates several technologies from different AI disciplines consisting of document conversion to machine-readable format (via computer vision), finding relevant data (via natural language processing), and formulating an eloquent response (via large language models). Users can explore over 10,000 Environmental, Social, and Governance (ESG) disclosure reports from over 2000 corporations. The Deep Search platform can be accessed at: https://ds4sd.github.io.


pNLP-Mixer: an Efficient all-MLP Architecture for Language

arXiv.org Artificial Intelligence

Large pre-trained language models drastically changed the natural language processing(NLP) landscape. Nowadays, they represent the go-to framework to tackle diverse NLP tasks, even with a limited number of annotations. However, using those models in production, either in the cloud or at the edge, remains a challenge due to the memory footprint and/or inference costs. As an alternative, recent work on efficient NLP has shown that small weight-efficient models can reach competitive performance at a fraction of the costs. Here, we introduce pNLP-Mixer, an embbedding-free model based on the MLP-Mixer architecture that achieves high weight-efficiency thanks to a novel linguistically informed projection layer. We evaluate our model on two multi-lingual semantic parsing datasets, MTOP and multiATIS. On MTOP our pNLP-Mixer almost matches the performance of mBERT, which has 38 times more parameters, and outperforms the state-of-the-art of tiny models (pQRNN) with 3 times fewer parameters. On a long-sequence classification task (Hyperpartisan) our pNLP-Mixer without pretraining outperforms RoBERTa, which has 100 times more parameters, demonstrating the potential of this architecture.