Goto

Collaborating Authors

 Srivastava, Harshvardhan


Personalized Speech Recognition for Children with Test-Time Adaptation

arXiv.org Artificial Intelligence

Accurate automatic speech recognition (ASR) for children is crucial for effective real-time child-AI interaction, especially in educational applications. However, off-the-shelf ASR models primarily pre-trained on adult data tend to generalize poorly to children's speech due to the data domain shift from adults to children. Recent studies have found that supervised fine-tuning on children's speech data can help bridge this domain shift, but human annotations may be impractical to obtain for real-world applications and adaptation at training time can overlook additional domain shifts occurring at test time. We devised a novel ASR pipeline to apply unsupervised test-time adaptation (TTA) methods for child speech recognition, so that ASR models pre-trained on adult speech can be continuously adapted to each child speaker at test time without further human annotations. Our results show that ASR models adapted with TTA methods significantly outperform the unadapted off-the-shelf ASR baselines both on average and statistically across individual child speakers. Our analysis also discovered significant data domain shifts both between child speakers and within each child speaker, which further motivates the need for test-time adaptation.


Getting Serious about Humor: Crafting Humor Datasets with Unfunny Large Language Models

arXiv.org Artificial Intelligence

Humor is a fundamental facet of human cognition and interaction. Yet, despite recent advances in natural language processing, humor detection remains a challenging task that is complicated by the scarcity of datasets that pair humorous texts with similar non-humorous counterparts. In our work, we investigate whether large language models (LLMs), can generate synthetic data for humor detection via editing texts. We benchmark LLMs on an existing human dataset and show that current LLMs display an impressive ability to 'unfun' jokes, as judged by humans and as measured on the downstream task of humor detection. We extend our approach to a code-mixed English-Hindi humor dataset, where we find that GPT-4's synthetic data is highly rated by bilingual annotators and provides challenging adversarial examples for humor classifiers.


CoRE-CoG: Conversational Recommendation of Entities using Constrained Generation

arXiv.org Artificial Intelligence

End-to-end conversational recommendation systems (CRS) generate responses by leveraging both dialog history and a knowledge base (KB). A CRS mainly faces three key challenges: (1) at each turn, it must decide if recommending a KB entity is appropriate; if so, it must identify the most relevant KB entity to recommend; and finally, it must recommend the entity in a fluent utterance that is consistent with the conversation history. Recent CRSs do not pay sufficient attention to these desiderata, often generating unfluent responses or not recommending (relevant) entities at the right turn. We introduce a new CRS we call CoRE-CoG. CoRE-CoG addresses the limitations in prior systems by implementing (1) a recommendation trigger that decides if the system utterance should include an entity, (2) a type pruning module that improves the relevance of recommended entities, and (3) a novel constrained response generator to make recommendations while maintaining fluency. Together, these modules ensure simultaneous accurate recommendation decisions and fluent system utterances. Experiments with recent benchmarks show the superiority particularly on conditional generation sub-tasks with close to 10 F1 and 4 Recall@1 percent points gain over baselines.


MMER: Multimodal Multi-task Learning for Speech Emotion Recognition

arXiv.org Artificial Intelligence

In this paper, we propose MMER, a novel Multimodal Multi-task learning approach for Speech Emotion Recognition. MMER leverages a novel multimodal network based on early-fusion and cross-modal self-attention between text and acoustic modalities and solves three novel auxiliary tasks for learning emotion recognition from spoken utterances. In practice, MMER outperforms all our baselines and achieves state-of-the-art performance on the IEMOCAP benchmark. Additionally, we conduct extensive ablation studies and results analysis to prove the effectiveness of our proposed approach.


M-MELD: A Multilingual Multi-Party Dataset for Emotion Recognition in Conversations

arXiv.org Artificial Intelligence

Expression of emotions is a crucial part of daily human communication. Emotion recognition in conversations (ERC) is an emerging field of study, where the primary task is to identify the emotion behind each utterance in a conversation. Though a lot of work has been done on ERC in the past, these works only focus on ERC in the English language, thereby ignoring any other languages. In this paper, we present Multilingual MELD (M-MELD), where we extend the Multimodal EmotionLines Dataset (MELD) \cite{poria2018meld} to 4 other languages beyond English, namely Greek, Polish, French, and Spanish. Beyond just establishing strong baselines for all of these 4 languages, we also propose a novel architecture, DiscLSTM, that uses both sequential and conversational discourse context in a conversational dialogue for ERC. Our proposed approach is computationally efficient, can transfer across languages using just a cross-lingual encoder, and achieves better performance than most uni-modal text approaches in the literature on both MELD and M-MELD. We make our data and code publicly on GitHub.