Srinivasa, Narayan
HDReason: Algorithm-Hardware Codesign for Hyperdimensional Knowledge Graph Reasoning
Chen, Hanning, Ni, Yang, Zakeri, Ali, Zou, Zhuowen, Yun, Sanggeon, Wen, Fei, Khaleghi, Behnam, Srinivasa, Narayan, Latapie, Hugo, Imani, Mohsen
In recent times, a plethora of hardware accelerators have been put forth for graph learning applications such as vertex classification and graph classification. However, previous works have paid little attention to Knowledge Graph Completion (KGC), a task that is well-known for its significantly higher algorithm complexity. The state-of-the-art KGC solutions based on graph convolution neural network (GCN) involve extensive vertex/relation embedding updates and complicated score functions, which are inherently cumbersome for acceleration. As a result, existing accelerator designs are no longer optimal, and a novel algorithm-hardware co-design for KG reasoning is needed. Recently, brain-inspired HyperDimensional Computing (HDC) has been introduced as a promising solution for lightweight machine learning, particularly for graph learning applications. In this paper, we leverage HDC for an intrinsically more efficient and acceleration-friendly KGC algorithm. We also co-design an acceleration framework named HDReason targeting FPGA platforms. On the algorithm level, HDReason achieves a balance between high reasoning accuracy, strong model interpretability, and less computation complexity. In terms of architecture, HDReason offers reconfigurability, high training throughput, and low energy consumption. When compared with NVIDIA RTX 4090 GPU, the proposed accelerator achieves an average 10.6x speedup and 65x energy efficiency improvement. When conducting cross-models and cross-platforms comparison, HDReason yields an average 4.2x higher performance and 3.4x better energy efficiency with similar accuracy versus the state-of-the-art FPGA-based GCN training platform.
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Heddes, Mike, Srinivasa, Narayan, Givargis, Tony, Nicolau, Alexandru
The excessive computational requirements of modern artificial neural networks (ANNs) are posing limitations on the machines that can run them. Sparsification of ANNs is often motivated by time, memory and energy savings only during model inference, yielding no benefits during training. A growing body of work is now focusing on providing the benefits of model sparsification also during training. While these methods greatly improve the training efficiency, the training algorithms yielding the most accurate models still materialize the dense weights, or compute dense gradients during training. We propose an efficient, always-sparse training algorithm with excellent scaling to larger and sparser models, supported by its linear time complexity with respect to the model width during training and inference. Moreover, our guided stochastic exploration algorithm improves over the accuracy of previous sparse training methods. We evaluate our method on CIFAR-10/100 and ImageNet using ResNet, VGG, and ViT models, and compare it against a range of sparsification methods.