Speakman, Skyler
Efficient Representation of the Activation Space in Deep Neural Networks
Akumu, Tanya, Cintas, Celia, Tadesse, Girmaw Abebe, Oshingbesan, Adebayo, Speakman, Skyler, McFowland, Edward III
The representations of the activation space of deep neural networks (DNNs) are widely utilized for tasks like natural language processing, anomaly detection and speech recognition. Due to the diverse nature of these tasks and the large size of DNNs, an efficient and task-independent representation of activations becomes crucial. Empirical p-values have been used to quantify the relative strength of an observed node activation compared to activations created by already-known inputs. Nonetheless, keeping raw data for these calculations increases memory resource consumption and raises privacy concerns. To this end, we propose a model-agnostic framework for creating representations of activations in DNNs using node-specific histograms to compute p-values of observed activations without retaining already-known inputs. Our proposed approach demonstrates promising potential when validated with multiple network architectures across various downstream tasks and compared with the kernel density estimates and brute-force empirical baselines. In addition, the framework reduces memory usage by 30% with up to 4 times faster p-value computing time while maintaining state-of-the-art detection power in downstream tasks such as the detection of adversarial attacks and synthesized content. Moreover, as we do not persist raw data at inference time, we could potentially reduce susceptibility to attacks and privacy issues.
Weakly Supervised Detection of Hallucinations in LLM Activations
Rateike, Miriam, Cintas, Celia, Wamburu, John, Akumu, Tanya, Speakman, Skyler
We propose an auditing method to identify whether a large language model (LLM) encodes patterns such as hallucinations in its internal states, which may propagate to downstream tasks. We introduce a weakly supervised auditing technique using a subset scanning approach to detect anomalous patterns in LLM activations from pre-trained models. Importantly, our method does not need knowledge of the type of patterns a-priori. Instead, it relies on a reference dataset devoid of anomalies during testing. Further, our approach enables the identification of pivotal nodes responsible for encoding these patterns, which may offer crucial insights for fine-tuning specific sub-networks for bias mitigation. We introduce two new scanning methods to handle LLM activations for anomalous sentences that may deviate from the expected distribution in either direction. Our results confirm prior findings of BERT's limited internal capacity for encoding hallucinations, while OPT appears capable of encoding hallucination information internally. Importantly, our scanning approach, without prior exposure to false statements, performs comparably to a fully supervised out-of-distribution classifier.
Sparsity-based Feature Selection for Anomalous Subgroup Discovery
Tadesse, Girmaw Abebe, Ogallo, William, Wanjiru, Catherine, Wachira, Charles, Mulang', Isaiah Onando, Anand, Vibha, Walcott-Bryant, Aisha, Speakman, Skyler
Anomalous pattern detection aims to identify instances where deviation from normalcy is evident, and is widely applicable across domains. Multiple anomalous detection techniques have been proposed in the state of the art. However, there is a common lack of a principled and scalable feature selection method for efficient discovery. Existing feature selection techniques are often conducted by optimizing the performance of prediction outcomes rather than its systemic deviations from the expected. In this paper, we proposed a sparsity-based automated feature selection (SAFS) framework, which encodes systemic outcome deviations via the sparsity of feature-driven odds ratios. SAFS is a model-agnostic approach with usability across different discovery techniques. SAFS achieves more than $3\times$ reduction in computation time while maintaining detection performance when validated on publicly available critical care dataset. SAFS also results in a superior performance when compared against multiple baselines for feature selection.
Towards creativity characterization of generative models via group-based subset scanning
Cintas, Celia, Das, Payel, Quanz, Brian, Speakman, Skyler, Akinwande, Victor, Chen, Pin-Yu
Deep generative models, such as Variational Autoencoders (VAEs), have been employed widely in computational creativity research. However, such models discourage out-of-distribution generation to avoid spurious sample generation, limiting their creativity. Thus, incorporating research on human creativity into generative deep learning techniques presents an opportunity to make their outputs more compelling and human-like. As we see the emergence of generative models directed to creativity research, a need for machine learning-based surrogate metrics to characterize creative output from these models is imperative. We propose group-based subset scanning to quantify, detect, and characterize creative processes by detecting a subset of anomalous node-activations in the hidden layers of generative models. Our experiments on original, typically decoded, and "creatively decoded" (Das et al 2020) image datasets reveal that the proposed subset scores distribution is more useful for detecting creative processes in the activation space rather than the pixel space. Further, we found that creative samples generate larger subsets of anomalies than normal or non-creative samples across datasets. The node activations highlighted during the creative decoding process are different from those responsible for normal sample generation.
Subset Scanning Over Neural Network Activations
Speakman, Skyler, Sridharan, Srihari, Remy, Sekou, Weldemariam, Komminist, McFowland, Edward
This work views neural networks as data generating systems and applies anomalous pattern detection techniques on that data in order to detect when a network is processing an anomalous input. Detecting anomalies is a critical component for multiple machine learning problems including detecting adversarial noise. More broadly, this work is a step towards giving neural networks the ability to recognize an out-of-distribution sample. This is the first work to introduce "Subset Scanning" methods from the anomalous pattern detection domain to the task of detecting anomalous input of neural networks. Subset scanning treats the detection problem as a search for the most anomalous subset of node activations (i.e., highest scoring subset according to non-parametric scan statistics). Mathematical properties of these scoring functions allow the search to be completed in log-linear rather than exponential time while still guaranteeing the most anomalous subset of nodes in the network is identified for a given input. Quantitative results for detecting and characterizing adversarial noise are provided for CIFAR-10 images on a simple convolutional neural network. We observe an "interference" pattern where anomalous activations in shallow layers suppress the activation structure of the original image in deeper layers.