Plotting

 Spasojevic, Igor


ATLAS Navigator: Active Task-driven LAnguage-embedded Gaussian Splatting

arXiv.org Artificial Intelligence

The module also clusters features based on geometry and semantics in the map. The hierarchical mapper [B] runs bottom-up, ingesting the RGB and depth images and the odometric path from the robot to build a map. The top level of the map contains the submaps, the middle level the regions, and the bottom level the objects. The local map compsises the loaded submaps. The other submaps are unloaded to save memory (shown here in gray). The planning module [C] consists of a discrete planner that operates on the sparse map and generates a reference path, while the dense Gaussians in the local map are used to find the trajectory to be executed on the robot. Abstract --We address the challenge of task-oriented navigation in unstructured and unknown environments, where robots must incrementally build and reason on rich, metric-semantic maps in real time. Since tasks may require clarification or re-specification, it is necessary for the information in the map to be rich enough to enable generalization across a wide range of tasks. T o effectively execute tasks specified in natural language, we propose a hierarchical representation built on language-embedded Gaussian splatting that enables both sparse semantic planning that lends itself to online operation and dense geometric representation for collision-free navigation. We validate the effectiveness of our method through real-world robot experiments conducted in both cluttered indoor and kilometer-scale outdoor environments, with a competitive ratio of about 60% against privileged baselines. Experiment videos and more details can be found on our project page: https://atlasnav.github.io This, in turn, requires robots to autonomously perceive their surroundings, gather relevant information, and make safe and efficient decisions - capabilities crucial for a variety of open-world tasking approaches over kilometer-scale environments with sparse semantics . To enable these capabilities on-board robots with privacy & compute constraints, we develop a framework to efficiently store and plan on hierarchical metric-semantic maps with visual and inertial sensors only. An overview of our method is shown in Figure 1. A cornerstone of autonomous navigation is the creation of actionable maps that effectively represent the environment and support diverse navigation and task-specific operations. These properties collectively ensure that the proposed map is not only manageable but also capable of supporting large-scale autonomous navigation to complete tasks provided in natural language. To achieve these goals, we propose an agglomerative data structure that is consistent across both geometric and semantic scales built upon 3D Gaussian Splatting [5] (3DGS).


RT-GuIDE: Real-Time Gaussian splatting for Information-Driven Exploration

arXiv.org Artificial Intelligence

We propose a framework for active mapping and exploration that leverages Gaussian splatting for constructing information-rich maps. Further, we develop a parallelized motion planning algorithm that can exploit the Gaussian map for real-time navigation. The Gaussian map constructed onboard the robot is optimized for both photometric and geometric quality while enabling real-time situational awareness for autonomy. We show through simulation experiments that our method is competitive with approaches that use alternate information gain metrics, while being orders of magnitude faster to compute. In real-world experiments, our algorithm achieves better map quality (10% higher Peak Signal-to-Noise Ratio (PSNR) and 30% higher geometric reconstruction accuracy) than Gaussian maps constructed by traditional exploration baselines. Experiment videos and more details can be found on our project page: https://tyuezhan.github.io/RT_GuIDE/


Collision-free time-optimal path parameterization for multi-robot teams

arXiv.org Artificial Intelligence

Coordinating the motion of multiple robots in cluttered environments remains a computationally challenging task. We study the problem of minimizing the execution time of a set of geometric paths by a team of robots with state-dependent actuation constraints. We propose a Time-Optimal Path Parameterization (TOPP) algorithm for multiple car-like agents, where the modulation of the timing of every robot along its assigned path is employed to ensure collision avoidance and dynamic feasibility. This is achieved through the use of a priority queue to determine the order of trajectory execution for each robot while taking into account all possible collisions with higher priority robots in a spatiotemporal graph. We show a 10-20% reduction in makespan against existing state-of-the-art methods and validate our approach through simulations and hardware experiments.


SlideSLAM: Sparse, Lightweight, Decentralized Metric-Semantic SLAM for Multi-Robot Navigation

arXiv.org Artificial Intelligence

This paper develops a real-time decentralized metric-semantic Simultaneous Localization and Mapping (SLAM) approach that leverages a sparse and lightweight object-based representation to enable a heterogeneous robot team to autonomously explore 3D environments featuring indoor, urban, and forested areas without relying on GPS. We use a hierarchical metric-semantic representation of the environment, including high-level sparse semantic maps of object models and low-level voxel maps. We leverage the informativeness and viewpoint invariance of the high-level semantic map to obtain an effective semantics-driven place-recognition algorithm for inter-robot loop closure detection across aerial and ground robots with different sensing modalities. A communication module is designed to track each robot's own observations and those of other robots whenever communication links are available. Such observations are then used to construct a merged map. Our framework enables real-time decentralized operations onboard robots, allowing them to opportunistically leverage communication. We integrate and deploy our proposed framework on three types of aerial and ground robots. Extensive experimental results show an average inter-robot localization error of approximately 20 cm in position and 0.2 degrees in orientation, an object mapping F1 score consistently over 0.9, and a communication packet size of merely 2-3 megabytes per kilometer trajectory with as many as 1,000 landmarks. The project website can be found at https://xurobotics.github.io/slideslam/.


An Active Perception Game for Robust Autonomous Exploration

arXiv.org Artificial Intelligence

We formulate active perception for an autonomous agent that explores an unknown environment as a two-player zero-sum game: the agent aims to maximize information gained from the environment while the environment aims to minimize the information gained by the agent. In each episode, the environment reveals a set of actions with their potentially erroneous information gain. In order to select the best action, the robot needs to recover the true information gain from the erroneous one. The robot does so by minimizing the discrepancy between its estimate of information gain and the true information gain it observes after taking the action. We propose an online convex optimization algorithm that achieves sub-linear expected regret $O(T^{3/4})$ for estimating the information gain. We also provide a bound on the regret of active perception performed by any (near-)optimal prediction and trajectory selection algorithms. We evaluate this approach using semantic neural radiance fields (NeRFs) in simulated realistic 3D environments to show that the robot can discover up to 12% more objects using the improved estimate of the information gain. On the M3ED dataset, the proposed algorithm reduced the error of information gain prediction in occupancy map by over 67%. In real-world experiments using occupancy maps on a Jackal ground robot, we show that this approach can calculate complicated trajectories that efficiently explore all occluded regions.


Trajectory Optimization with Global Yaw Parameterization for Field-of-View Constrained Autonomous Flight

arXiv.org Artificial Intelligence

Trajectory generation for quadrotors with limited field-of-view sensors has numerous applications such as aerial exploration, coverage, inspection, videography, and target tracking. Most previous works simplify the task of optimizing yaw trajectories by either aligning the heading of the robot with its velocity, or potentially restricting the feasible space of candidate trajectories by using a limited yaw domain to circumvent angular singularities. In this paper, we propose a novel \textit{global} yaw parameterization method for trajectory optimization that allows a 360-degree yaw variation as demanded by the underlying algorithm. This approach effectively bypasses inherent singularities by including supplementary quadratic constraints and transforming the final decision variables into the desired state representation. This method significantly reduces the needed control effort, and improves optimization feasibility. Furthermore, we apply the method to several examples of different applications that require jointly optimizing over both the yaw and position trajectories. Ultimately, we present a comprehensive numerical analysis and evaluation of our proposed method in both simulation and real-world experiments.


Deep Learning for Optimization of Trajectories for Quadrotors

arXiv.org Artificial Intelligence

This paper presents a novel learning-based trajectory planning framework for quadrotors that combines model-based optimization techniques with deep learning. Specifically, we formulate the trajectory optimization problem as a quadratic programming (QP) problem with dynamic and collision-free constraints using piecewise trajectory segments through safe flight corridors [1]. We train neural networks to directly learn the time allocation for each segment to generate optimal smooth and fast trajectories. Furthermore, the constrained optimization problem is applied as a separate implicit layer for backpropagation in the network, for which the differential loss function can be obtained. We introduce an additional penalty function to penalize time allocations which result in solutions that violate the constraints to accelerate the training process and increase the success rate of the original optimization problem. To this end, we enable a flexible number of sequences of piece-wise trajectories by adding an extra end-of-sentence token during training. We illustrate the performance of the proposed method via extensive simulation and experimentation and show that it works in real time in diverse, cluttered environments.


3D Active Metric-Semantic SLAM

arXiv.org Artificial Intelligence

In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using Size Weight and Power (SWaP) constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We propose a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for SWaP-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including Semantic Loop Closure (SLC), we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.


Navigation with shadow prices to optimize multi-commodity flow rates

arXiv.org Artificial Intelligence

We propose a method for providing communication network infrastructure in autonomous multi-agent teams. In particular, we consider a set of communication agents that are placed alongside regular agents from the system in order to improve the rate of information transfer between the latter. In order to find the optimal positions to place such agents, we define a flexible performance function that adapts to network requirements for different systems. We provide an algorithm based on shadow prices of a related convex optimization problem in order to drive the configuration of the complete system towards a local maximum. We apply our method to three different performance functions associated with three practical scenarios in which we show both the performance of the algorithm and the flexibility it allows for optimizing different network requirements.


Robust Localization of Aerial Vehicles via Active Control of Identical Ground Vehicles

arXiv.org Artificial Intelligence

This paper addresses the problem of active collaborative localization in heterogeneous robot teams with unknown data association. It involves positioning a small number of identical unmanned ground vehicles (UGVs) at desired positions so that an unmanned aerial vehicle (UAV) can, through unlabelled measurements of UGVs, uniquely determine its global pose. We model the problem as a sequential two player game, in which the first player positions the UGVs and the second identifies the two distinct hypothetical poses of the UAV at which the sets of measurements to the UGVs differ by as little as possible. We solve the underlying problem from the vantage point of the first player for a subclass of measurement models using a mixture of local optimization and exhaustive search procedures. Real-world experiments with a team of UAV and UGVs show that our method can achieve centimeter-level global localization accuracy. We also show that our method consistently outperforms random positioning of UGVs by a large margin, with as much as a 90% reduction in position and angular estimation error. Our method can tolerate a significant amount of random as well as non-stochastic measurement noise. This indicates its potential for reliable state estimation on board size, weight, and power (SWaP) constrained UAVs. This work enables robust localization in perceptually-challenged GPS-denied environments, thus paving the road for large-scale multi-robot navigation and mapping.