Soulier, Laure
VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
Aissi, Mohamed Salim, Grislain, Clemence, Chetouani, Mohamed, Sigaud, Olivier, Soulier, Laure, Thome, Nicolas
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
SCOPE: A Self-supervised Framework for Improving Faithfulness in Conditional Text Generation
Duong, Song, Bronnec, Florian Le, Allauzen, Alexandre, Guigue, Vincent, Lumbreras, Alberto, Soulier, Laure, Gallinari, Patrick
Large Language Models (LLMs), when used for conditional text generation, often produce hallucinations, i.e., information that is unfaithful or not grounded in the input context. This issue arises in typical conditional text generation tasks, such as text summarization and data-to-text generation, where the goal is to produce fluent text based on contextual input. When fine-tuned on specific domains, LLMs struggle to provide faithful answers to a given context, often adding information or generating errors. One underlying cause of this issue is that LLMs rely on statistical patterns learned from their training data. This reliance can interfere with the model's ability to stay faithful to a provided context, leading to the generation of ungrounded information. We build upon this observation and introduce a novel self-supervised method for generating a training set of unfaithful samples. We then refine the model using a training process that encourages the generation of grounded outputs over unfaithful ones, drawing on preference-based training. Our approach leads to significantly more grounded text generation, outperforming existing self-supervised techniques in faithfulness, as evaluated through automatic metrics, LLM-based assessments, and human evaluations.
Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting
Aissi, Mohamed Salim, Romac, Clement, Carta, Thomas, Lamprier, Sylvain, Oudeyer, Pierre-Yves, Sigaud, Olivier, Soulier, Laure, Thome, Nicolas
Reinforcement learning (RL) is a promising approach for aligning large language models (LLMs) knowledge with sequential decision-making tasks. However, few studies have thoroughly investigated the impact on LLM agents capabilities of fine-tuning them with RL in a specific environment. In this paper, we propose a novel framework to analyze the sensitivity of LLMs to prompt formulations following RL training in a textual environment. Our findings reveal that the performance of LLMs degrades when faced with prompt formulations different from those used during the RL training phase. Besides, we analyze the source of this sensitivity by examining the model's internal representations and salient tokens. Finally, we propose to use a contrastive loss to mitigate this sensitivity and improve the robustness and generalization capabilities of LLMs.
Investigating the impact of 2D gesture representation on co-speech gesture generation
Guichoux, Teo, Soulier, Laure, Obin, Nicolas, Pelachaud, Catherine
Co-speech gestures play a crucial role in the interactions between humans and embodied conversational agents (ECA). Recent deep learning methods enable the generation of realistic, natural co-speech gestures synchronized with speech, but such approaches require large amounts of training data. "In-the-wild" datasets, which compile videos from sources such as YouTube through human pose detection models, offer a solution by providing 2D skeleton sequences that are paired with speech. Concurrently, innovative lifting models have emerged, capable of transforming these 2D pose sequences into their 3D counterparts, leading to large and diverse datasets of 3D gestures. However, the derived 3D pose estimation is essentially a pseudo-ground truth, with the actual ground truth being the 2D motion data. This distinction raises questions about the impact of gesture representation dimensionality on the quality of generated motions, a topic that, to our knowledge, remains largely unexplored. In this work, we evaluate the impact of the dimensionality of the training data, 2D or 3D joint coordinates, on the performance of a multimodal speech-to-gesture deep generative model. We use a lifting model to convert 2D-generated sequences of body pose to 3D. Then, we compare the sequence of gestures generated directly in 3D to the gestures generated in 2D and lifted to 3D as post-processing.
What Makes Multimodal In-Context Learning Work?
Baldassini, Folco Bertini, Shukor, Mustafa, Cord, Matthieu, Soulier, Laure, Piwowarski, Benjamin
Large Language Models have demonstrated remarkable performance across various tasks, exhibiting the capacity to swiftly acquire new skills, such as through In-Context Learning (ICL) with minimal demonstration examples. In this work, we present a comprehensive framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models. We consider the best open-source multimodal models (e.g., IDEFICS, OpenFlamingo) and a wide range of multimodal tasks. Our study unveils several noteworthy findings: (1) M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality. (2) When used with advanced-ICL strategy (like RICES), M-ICL is not better than a simple strategy based on majority voting over context examples. Moreover, we identify several biases and limitations of M-ICL that warrant consideration prior to deployment. Code available at https://gitlab.com/folbaeni/multimodal-icl
PAQA: Toward ProActive Open-Retrieval Question Answering
Erbacher, Pierre, Nie, Jian-Yun, Preux, Philippe, Soulier, Laure
Conversational systems have made significant progress in generating natural language responses. However, their potential as conversational search systems is currently limited due to their passive role in the information-seeking process. One major limitation is the scarcity of datasets that provide labelled ambiguous questions along with a supporting corpus of documents and relevant clarifying questions. This work aims to tackle the challenge of generating relevant clarifying questions by taking into account the inherent ambiguities present in both user queries and documents. To achieve this, we propose PAQA, an extension to the existing AmbiNQ dataset, incorporating clarifying questions. We then evaluate various models and assess how passage retrieval impacts ambiguity detection and the generation of clarifying questions. By addressing this gap in conversational search systems, we aim to provide additional supervision to enhance their active participation in the information-seeking process and provide users with more accurate results.
LOCOST: State-Space Models for Long Document Abstractive Summarization
Bronnec, Florian Le, Duong, Song, Ravaut, Mathieu, Allauzen, Alexandre, Chen, Nancy F., Guigue, Vincent, Lumbreras, Alberto, Soulier, Laure, Gallinari, Patrick
State-space models are a low-complexity alternative to transformers for encoding long sequences and capturing long-term dependencies. We propose LOCOST: an encoder-decoder architecture based on state-space models for conditional text generation with long context inputs. With a computational complexity of $O(L \log L)$, this architecture can handle significantly longer sequences than state-of-the-art models that are based on sparse attention patterns. We evaluate our model on a series of long document abstractive summarization tasks. The model reaches a performance level that is 93-96% comparable to the top-performing sparse transformers of the same size while saving up to 50% memory during training and up to 87% during inference. Additionally, LOCOST effectively handles input texts exceeding 600K tokens at inference time, setting new state-of-the-art results on full-book summarization and opening new perspectives for long input processing.
Navigating Uncertainty: Optimizing API Dependency for Hallucination Reduction in Closed-Book Question Answering
Erbacher, Pierre, Falissar, Louis, Guigue, Vincent, Soulier, Laure
While Large Language Models (LLM) are able to accumulate and restore knowledge, they are still prone to hallucination. Especially when faced with factual questions, LLM cannot only rely on knowledge stored in parameters to guarantee truthful and correct answers. Augmenting these models with the ability to search on external information sources, such as the web, is a promising approach to ground knowledge to retrieve information. However, searching in a large collection of documents introduces additional computational/time costs. An optimal behavior would be to query external resources only when the LLM is not confident about answers. In this paper, we propose a new LLM able to self-estimate if it is able to answer directly or needs to request an external tool. We investigate a supervised approach by introducing a hallucination masking mechanism in which labels are generated using a close book question-answering task. In addition, we propose to leverage parameter-efficient fine-tuning techniques to train our model on a small amount of data. Our model directly provides answers for $78.2\%$ of the known queries and opts to search for $77.2\%$ of the unknown ones. This results in the API being utilized only $62\%$ of the time.
Improving generalization in large language models by learning prefix subspaces
Falissard, Louis, Guigue, Vincent, Soulier, Laure
This article focuses on large language models (LLMs) fine-tuning in the scarce data regime (also known as the "few-shot" learning setting). We propose a method to increase the generalization capabilities of LLMs based on neural network subspaces. This optimization method, recently introduced in computer vision, aims to improve model generalization by identifying wider local optima through the joint optimization of an entire simplex of models in parameter space. Its adaptation to massive, pretrained transformers, however, poses some challenges. First, their considerable number of parameters makes it difficult to train several models jointly, and second, their deterministic parameter initialization schemes make them unfit for the subspace method as originally proposed. We show in this paper that "Parameter Efficient Fine-Tuning" (PEFT) methods, however, are perfectly compatible with this original approach, and propose to learn entire simplex of continuous prefixes. We test our method on a variant of the GLUE benchmark adapted to the few-shot learning setting, and show that both our contributions jointly lead to a gain in average performances compared to sota methods. The implementation can be found at the following link: https://github.com/Liloulou/prefix_subspace
Rewarded soups: towards Pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards
Ramé, Alexandre, Couairon, Guillaume, Shukor, Mustafa, Dancette, Corentin, Gaya, Jean-Baptiste, Soulier, Laure, Cord, Matthieu
Foundation models are first pre-trained on vast unsupervised datasets and then fine-tuned on labeled data. Reinforcement learning, notably from human feedback (RLHF), can further align the network with the intended usage. Yet the imperfections in the proxy reward may hinder the training and lead to suboptimal results; the diversity of objectives in real-world tasks and human opinions exacerbate the issue. This paper proposes embracing the heterogeneity of diverse rewards by following a multi-policy strategy. Rather than focusing on a single a priori reward, we aim for Pareto-optimal generalization across the entire space of preferences. To this end, we propose rewarded soup, first specializing multiple networks independently (one for each proxy reward) and then interpolating their weights linearly. This succeeds empirically because we show that the weights remain linearly connected when fine-tuned on diverse rewards from a shared pre-trained initialization. We demonstrate the effectiveness of our approach for text-to-text (summarization, Q&A, helpful assistant, review), text-image (image captioning, text-to-image generation, visual grounding, VQA), and control (locomotion) tasks. We hope to enhance the alignment of deep models, and how they interact with the world in all its diversity.