Song, Zixing
Context-aware Inductive Knowledge Graph Completion with Latent Type Constraints and Subgraph Reasoning
Li, Muzhi, Yang, Cehao, Xu, Chengjin, Song, Zixing, Jiang, Xuhui, Guo, Jian, Leung, Ho-fung, King, Irwin
Inductive knowledge graph completion (KGC) aims to predict missing triples with unseen entities. Recent works focus on modeling reasoning paths between the head and tail entity as direct supporting evidence. However, these methods depend heavily on the existence and quality of reasoning paths, which limits their general applicability in different scenarios. In addition, we observe that latent type constraints and neighboring facts inherent in KGs are also vital in inferring missing triples. To effectively utilize all useful information in KGs, we introduce CATS, a novel context-aware inductive KGC solution. With sufficient guidance from proper prompts and supervised fine-tuning, CATS activates the strong semantic understanding and reasoning capabilities of large language models to assess the existence of query triples, which consist of two modules. First, the type-aware reasoning module evaluates whether the candidate entity matches the latent entity type as required by the query relation. Then, the subgraph reasoning module selects relevant reasoning paths and neighboring facts, and evaluates their correlation to the query triple. Experiment results on three widely used datasets demonstrate that CATS significantly outperforms state-of-the-art methods in 16 out of 18 transductive, inductive, and few-shot settings with an average absolute MRR improvement of 7.2%.
A Survey on Vision-Language-Action Models for Embodied AI
Ma, Yueen, Song, Zixing, Zhuang, Yuzheng, Hao, Jianye, King, Irwin
Deep learning has demonstrated remarkable success across many domains, including computer vision, natural language processing, and reinforcement learning. Representative artificial neural networks in these fields span convolutional neural networks, Transformers, and deep Q-networks. Built upon unimodal neural networks, numerous multi-modal models have been introduced to address a range of tasks such as visual question answering, image captioning, and speech recognition. The rise of instruction-following robotic policies in embodied AI has spurred the development of a novel category of multi-modal models known as vision-language-action models (VLAs). Their multi-modality capability has become a foundational element in robot learning. Various methods have been proposed to enhance traits such as versatility, dexterity, and generalizability. Some models focus on refining specific components through pretraining. Others aim to develop control policies adept at predicting low-level actions. Certain VLAs serve as high-level task planners capable of decomposing long-horizon tasks into executable subtasks. Over the past few years, a myriad of VLAs have emerged, reflecting the rapid advancement of embodied AI. Therefore, it is imperative to capture the evolving landscape through a comprehensive survey.
ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural Networks via Normalization
Liang, Langzhang, Xu, Zenglin, Song, Zixing, King, Irwin, Qi, Yuan, Ye, Jieping
Graph Neural Networks (GNNs) have attracted much attention due to their ability in learning representations from graph-structured data. Despite the successful applications of GNNs in many domains, the optimization of GNNs is less well studied, and the performance on node classification heavily suffers from the long-tailed node degree distribution. This paper focuses on improving the performance of GNNs via normalization. In detail, by studying the long-tailed distribution of node degrees in the graph, we propose a novel normalization method for GNNs, which is termed ResNorm (\textbf{Res}haping the long-tailed distribution into a normal-like distribution via \textbf{norm}alization). The $scale$ operation of ResNorm reshapes the node-wise standard deviation (NStd) distribution so as to improve the accuracy of tail nodes (\textit{i}.\textit{e}., low-degree nodes). We provide a theoretical interpretation and empirical evidence for understanding the mechanism of the above $scale$. In addition to the long-tailed distribution issue, over-smoothing is also a fundamental issue plaguing the community. To this end, we analyze the behavior of the standard shift and prove that the standard shift serves as a preconditioner on the weight matrix, increasing the risk of over-smoothing. With the over-smoothing issue in mind, we design a $shift$ operation for ResNorm that simulates the degree-specific parameter strategy in a low-cost manner. Extensive experiments have validated the effectiveness of ResNorm on several node classification benchmark datasets.
Spectral Feature Augmentation for Graph Contrastive Learning and Beyond
Zhang, Yifei, Zhu, Hao, Song, Zixing, Koniusz, Piotr, King, Irwin
Although augmentations (e.g., perturbation of graph edges, image crops) boost the efficiency of Contrastive Learning (CL), feature level augmentation is another plausible, complementary yet not well researched strategy. Thus, we present a novel spectral feature argumentation for contrastive learning on graphs (and images). To this end, for each data view, we estimate a low-rank approximation per feature map and subtract that approximation from the map to obtain its complement. This is achieved by the proposed herein incomplete power iteration, a non-standard power iteration regime which enjoys two valuable byproducts (under mere one or two iterations): (i) it partially balances spectrum of the feature map, and (ii) it injects the noise into rebalanced singular values of the feature map (spectral augmentation). For two views, we align these rebalanced feature maps as such an improved alignment step can focus more on less dominant singular values of matrices of both views, whereas the spectral augmentation does not affect the spectral angle alignment (singular vectors are not perturbed). We derive the analytical form for: (i) the incomplete power iteration to capture its spectrum-balancing effect, and (ii) the variance of singular values augmented implicitly by the noise. We also show that the spectral augmentation improves the generalization bound. Experiments on graph/image datasets show that our spectral feature augmentation outperforms baselines, and is complementary with other augmentation strategies and compatible with various contrastive losses.
Graph Component Contrastive Learning for Concept Relatedness Estimation
Ma, Yueen, Song, Zixing, Hu, Xuming, Li, Jingjing, Zhang, Yifei, King, Irwin
Concept relatedness estimation (CRE) aims to determine whether two given concepts are related. Existing methods only consider the pairwise relationship between concepts, while overlooking the higher-order relationship that could be encoded in a concept-level graph structure. We discover that this underlying graph satisfies a set of intrinsic properties of CRE, including reflexivity, commutativity, and transitivity. In this paper, we formalize the CRE properties and introduce a graph structure named ConcreteGraph. To address the data scarcity issue in CRE, we introduce a novel data augmentation approach to sample new concept pairs from the graph. As it is intractable for data augmentation to fully capture the structural information of the ConcreteGraph due to a large amount of potential concept pairs, we further introduce a novel Graph Component Contrastive Learning framework to implicitly learn the complete structure of the ConcreteGraph. Empirical results on three datasets show significant improvement over the state-of-the-art model. Detailed ablation studies demonstrate that our proposed approach can effectively capture the high-order relationship among concepts.
A Survey on Deep Semi-supervised Learning
Yang, Xiangli, Song, Zixing, King, Irwin, Xu, Zenglin
Deep semi-supervised learning is a fast-growing field with a range of practical applications. This paper provides a comprehensive survey on both fundamentals and recent advances in deep semi-supervised learning methods from perspectives of model design and unsupervised loss functions. We first present a taxonomy for deep semi-supervised learning that categorizes existing methods, including deep generative methods, consistency regularization methods, graph-based methods, pseudo-labeling methods, and hybrid methods. Then we provide a comprehensive review of 52 representative methods and offer a detailed comparison of these methods in terms of the type of losses, contributions, and architecture differences. In addition to the progress in the past few years, we further discuss some shortcomings of existing methods and provide some tentative heuristic solutions for solving these open problems.