Song, Zezheng
Omni-Mol: Exploring Universal Convergent Space for Omni-Molecular Tasks
Hu, Chengxin, Li, Hao, Yuan, Yihe, Song, Zezheng, Wang, Haixin
Building generalist models has recently demonstrated remarkable capabilities in diverse scientific domains. Within the realm of molecular learning, several studies have explored unifying diverse tasks across diverse domains. However, negative conflicts and interference between molecules and knowledge from different domain may have a worse impact in threefold. First, conflicting molecular representations can lead to optimization difficulties for the models. Second, mixing and scaling up training data across diverse tasks is inherently challenging. Third, the computational cost of refined pretraining is prohibitively high. To address these limitations, this paper presents Omni-Mol, a scalable and unified LLM-based framework for direct instruction tuning. Omni-Mol builds on three key components to tackles conflicts: (1) a unified encoding mechanism for any task input; (2) an active-learning-driven data selection strategy that significantly reduces dataset size; (3) a novel design of the adaptive gradient stabilization module and anchor-and-reconcile MoE framework that ensures stable convergence. Experimentally, Omni-Mol achieves state-of-the-art performance across 15 molecular tasks, demonstrates the presence of scaling laws in the molecular domain, and is supported by extensive ablation studies and analyses validating the effectiveness of its design. The code and weights of the powerful AI-driven chemistry generalist are open-sourced at: https://anonymous.4open.science/r/Omni-Mol-8EDB.
FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model
Song, Zezheng, Yuan, Jiaxin, Yang, Haizhao
In this paper, we propose a pre-trained foundation model \textbf{FMint} (\textbf{F}oundation \textbf{M}odel based on \textbf{In}i\textbf{t}ialization), designed to speed up large-scale simulations of various differential equations with high accuracy via error correction. Human-designed simulation algorithms excel at capturing the fundamental physics of engineering problems, but often need to balance the trade-off between accuracy and efficiency. While deep learning methods offer innovative solutions across numerous scientific fields, they frequently fall short in domain-specific knowledge. FMint bridges these gaps through conditioning on the initial coarse solutions obtained from conventional human-designed algorithms, and trained to obtain refined solutions for various differential equations. Based on the backbone of large language models, we adapt the in-context learning scheme to learn a universal error correction method for dynamical systems from given prompted sequences of coarse solutions. The model is pre-trained on a corpus of 600K ordinary differential equations (ODEs), and we conduct extensive experiments on both in-distribution and out-of-distribution tasks. FMint outperforms various baselines on large-scale simulation, and demonstrates its capability in generalization to unseen ODEs. Our approach achieves an accuracy improvement of 1 to 2 orders of magnitude over state-of-the-art dynamical system simulators, and delivers a 5X speedup compared to traditional numerical algorithms.
A Finite Expression Method for Solving High-Dimensional Committor Problems
Song, Zezheng, Cameron, Maria K., Yang, Haizhao
Transition path theory (TPT) is a mathematical framework for quantifying rare transition events between a pair of selected metastable states $A$ and $B$. Central to TPT is the committor function, which describes the probability to hit the metastable state $B$ prior to $A$ from any given starting point of the phase space. Once the committor is computed, the transition channels and the transition rate can be readily found. The committor is the solution to the backward Kolmogorov equation with appropriate boundary conditions. However, solving it is a challenging task in high dimensions due to the need to mesh a whole region of the ambient space. In this work, we explore the finite expression method (FEX, Liang and Yang (2022)) as a tool for computing the committor. FEX approximates the committor by an algebraic expression involving a fixed finite number of nonlinear functions and binary arithmetic operations. The optimal nonlinear functions, the binary operations, and the numerical coefficients in the expression template are found via reinforcement learning. The FEX-based committor solver is tested on several high-dimensional benchmark problems. It gives comparable or better results than neural network-based solvers. Most importantly, FEX is capable of correctly identifying the algebraic structure of the solution which allows one to reduce the committor problem to a low-dimensional one and find the committor with any desired accuracy.